There is a classical approach without much computation.
For any prime $p$, we may estimate its exponent in $\binom{2n}{n}$ as follows
$$\nu_p\biggl(\binom{2n}{n}\biggr)=\sum_{k=1}^{\lfloor\log_p2n\rfloor}\biggl(\Bigl\lfloor\frac{2n}{p^k}\Bigr\rfloor-2\Bigl\lfloor\frac{n}{p^k}\Bigr\rfloor\biggr)\leqslant\sum_{k=1}^{\lfloor\log_p2n\rfloor}1\leqslant\log_p2n.$$
So we have
$$\binom{2n}{n}=\prod_{\text{prime}~p\\p<2n}p^{\nu_p\bigl(\binom{2n}{n}\bigr)}\leqslant\prod_{\text{prime}~p\\p<2n}p^{\log_p2n}=\prod_{\text{prime}~p\\p<2n}2n=(2n)^{\pi(2n)}.$$
For $n>1$, we also have
$$\binom{2n}{n}=\prod_{k=1}^n\frac{n+k}{k}>\prod_{k=1}^n2=2^n.$$
This proved the second inequality.
For the first one, just note that $\binom{2n}{n}$ is divisible by any prime $p$ in the region $(n,2n)$, therefore
$$\binom{2n}{n}\geqslant\prod_{\text{prime}~p\\n<p<2n}p\geqslant\prod_{\text{prime}~p\\n<p<2n}n=n^{\pi(2n)-\pi(n)}.$$
Then $\binom{2n}{n}<\sum_{k=0}^{2n}\binom{2n}{k}=2^{2n}$ gives the disired result.