I am able to derive the following equation by substituting the definition of a Fourier transform into it's inverse.
$$2\pi\delta(x-x') = \int_{-\infty}^{\infty} e^{ik(x-x')} dk$$
How do you prove that the Dirac Delta is equal to an integral of the exponential function? How do you prove the above equation is true?
$$(5)\space\space\space\space\space\space\space\space\space\space\space\space〈\space p \space 〉 = \frac{1}{2\pi}\Bigg(\int_{-\infty}^{\infty} \int_{-\infty}^\infty \hat \phi\dot(j) \hat \phi(k) ,\hbar k\space \int_{-\infty}^{\infty} \space e^{i(k-j)x} \space\space \space \space \delta x , \delta j \delta k\Bigg)$$
– Jeremy Aug 29 '17 at 04:14