Hint $ $ Verify both sides are solutions of the recurrence $\rm\: f(n) - f(n\!-\!1) = (-1)^n 4n,\,\ f(1) =4,$ therefore they are equal for all $\rm\:n\:$ by a simple induction (which amounts to the uniqueness theorem for such recurrences -- see my many posts on telescopy).
Remark $\ $ For completeness I sketch the trivial inductive proof of said uniqueness theorem, sometimes called the fundamental theorem of difference calculus.
Theorem $ $ If $\rm\:f_1,f_2,g,h\:$ are functions on $\Bbb N,\,$ and $\rm\:f_1,f_2\:$ satisfy $\rm\:f(n\!+\!1) \color{#C00}= g(n) f(n) + h(n)\:$ for all $\rm\:n\ge 1,\:$ then $\rm\: f_1(1) = f_2(1)\:\Rightarrow\:f_1(n) = f_2(n)\:$ for all $\rm\:n \ge 1.$
Proof $\ $ Induct on $\rm\:n.\:$ The base case $\rm\:n=1\:$ is true by hypothesis, and the inductive step is
$$\begin{align} \rm \color{blue}{f_1(n)} = \color{#0A0}{f_2(n)}\ \Rightarrow\ f_1(n\!+\!1) &\rm \,\color{#C00} =\, g(n)\,\color{blue}{f_1(n)}+h(n)\\[.3em]
&\,=\,\rm g(n)\, \color{#0A0}{f_2(n)}+h(n)\\[.3em]
& \,\rm \color{#C00} = f_2(n\!+\!1)\end{align}\qquad\qquad\qquad$$