Stirling's Formula
$$
n!\sim\sqrt{2\pi n}\,\frac{n^n}{e^n}
$$
says that
$$
\frac{n!}{n^n}\sim\frac{\sqrt{2\pi n}}{e^n}
$$
Thus, at the edges the absolute value of the terms are
$$
|a_n|=\frac{e^nn!}{n^n}\sim\sqrt{2\pi n}
$$
which means that the terms don't go to $0$ at the edges.
A Derivation of Stirling's Formula
First
$$
\begin{align}
\int_{k-1/2}^{k+1/2}\log(x)\,\mathrm{d}x
&=\int_k^{k+1/2}\log(x)\,\mathrm{d}x+\int_{k-1/2}^k\log(x)\,\mathrm{d}x\\
&=\int_0^{1/2}\log(k+t)\,\mathrm{d}x+\int_0^{1/2}\log(k-t)\,\mathrm{d}t\\
&=\int_0^{1/2}\log\left(k^2-t^2\right)\,\mathrm{d}t\\
&=\log(k)+\int_0^{1/2}\log\left(1-\frac{t^2}{k^2}\right)\,\mathrm{d}t\tag{1}
\end{align}
$$
Euler's Product Formula for $\sin(\pi t)$ easily leads to
$$
\sum_{k=1}^\infty\log\left(1-\frac{t^2}{k^2}\right)=\log\left(\frac{\sin(\pi t)}{\pi t}\right)\tag{2}
$$
Using symmetry and a double angle formula, we get
$$
\begin{align}
\int_0^{1/2}\log(\sin(\pi t))\,\mathrm{d}t
&=\frac12\int_0^1\log(\sin(\pi t))\,\mathrm{d}t\\
&=\int_0^{1/2}\log(\sin(2\pi t))\,\mathrm{d}t\\
&=\frac12\log(2)+\int_0^{1/2}\log(\sin(\pi t))\,\mathrm{d}t+\int_0^{1/2}\log(\cos(\pi t))\,\mathrm{d}t\\
&=\frac12\log(2)+2\int_0^{1/2}\log(\sin(\pi t))\,\mathrm{d}t\\[3pt]
&=-\frac12\log(2)\tag{3}
\end{align}
$$
Using $(1)$, $(2)$, $(3)$, and $\log\left(n+\tfrac12\right)=\log(n)+\frac1{2n}+O\!\left(\frac1{n^2}\right)$, we get
$$
\begin{align}
\log(n!)
&=\sum_{k=1}^n\log(k)\\
&=\int_{1/2}^{n+1/2}\log(x)\,\mathrm{d}x-\sum_{k=1}^n\int_0^{1/2}\log\left(1-\frac{t^2}{k^2}\right)\,\mathrm{d}t\\
&=\int_{1/2}^{n+1/2}\log(x)\,\mathrm{d}x-\int_0^{1/2}\log\left(\frac{\sin(\pi t)}{\pi t}\right)\,\mathrm{d}t+\sum_{k=n+1}^\infty \int_0^{1/2}\log\left(1-\frac{t^2}{k^2}\right)\,\mathrm{d}t\\
&=\int_0^{n+1/2}\log(x)\,\mathrm{d}x+\tfrac12\log(\pi)-\int_0^{1/2}\log(\sin(\pi t))\,\mathrm{d}t+\sum_{k=n+1}^\infty O\!\left(\frac1{k^2}\right)\\[6pt]
&=\left(n+\tfrac12\right)\log\left(n+\tfrac12\right)-\left(n+\tfrac12\right)+\tfrac12\log(\pi)+\tfrac12\log(2)+O\!\left(\tfrac1n\right)\\[12pt]
&=\left(n+\tfrac12\right)\log(n)-n+\tfrac12\log(2\pi)+O\!\left(\tfrac1n\right)\\[12pt]
&=n\log(n)-n+\tfrac12\log(2\pi n)+O\!\left(\tfrac1n\right)\tag{4}
\end{align}
$$
Equation $(4)$ is equivalent to
$$
n!=\sqrt{2\pi n}\,\frac{n^n}{e^n}\left(1+O\!\left(\frac1n\right)\right)\tag{5}
$$