I have the following problem:
How to show $\exp(ix)=\cos x+i\sin x$ using $\exp(z)=\sum_{n=0}^{\infty}\frac{z^n}{n!}$
My attempt: \begin{align*} \exp(ix)=\sum_{n=0}^{\infty}\frac{(ix)^n}{n!} \end{align*} Now split the sum in 4 sums because $i^n$ has period 4, more precisely $i^{4n}=1$, $i^{4n+1}=i$, $i^{4n+2}=-1$ and $i^{4n+3}=-i$ for $n\geq 0$. \begin{align*} \sum_{n=0}^{\infty}\frac{(ix)^n}{n!}&=\sum_{n=0}^{\infty}\frac{(ix)^{4n}}{(4n)!}+\sum_{n=0}^{\infty}\frac{(ix)^{4n+1}}{(4n+1)!}+\sum_{n=0}^{\infty}\frac{(ix)^{4n+2}}{(4n+2)!}+\sum_{n=0}^{\infty}\frac{(ix)^{4n+3}}{(4n+3)!}\\ &=\sum_{n=0}^{\infty}\left(\frac{x^{4n}}{(4n)!}-\frac{x^{4n+2}}{(4n+2)!}\right)+i\sum_{n=0}^{\infty}\left(\frac{x^{4n+1}}{(4n+1)!}-\frac{x^{4n+3}}{(4n+3)!}\right) \end{align*} Then $4n$ and $4n+2$ are nonnegative and even numbers and $4n+1$ and $4n+3$ are odd. How can I use this to convert the two last expressions into \begin{align*} \cos x&=\sum_{m=0}^{\infty}(-1)^m \frac{x^{2m}}{(2m)!}\\ \sin x&=\sum_{m=0}^{\infty}(-1)^m \frac{x^{2m+1}}{(2m+1)!} \end{align*} I don't want to see proofs like \begin{align*} \exp(ix)&=1+ix+\frac{(ix)^2}{2!}+\frac{(ix)^3}{3!}+\frac{(ix)^4}{4!}+\frac{(ix)^5}{5!}\ldots\\ &=\Big(1-\frac{x^2}{2!}+\frac{x^4}{4!}\mp\ldots\Big)+i\Big(x-\frac{x^3}{3!}+\frac{x^5}{5!}\mp\ldots\Big)\\ &=\cos x+i\sin x \end{align*}