There are simple examples of non-Bezout UFDs, e.g. any UFD of dimension $> 1$, e.g. $\Bbb Z[x,y],\,$ as follows by the below equivalent conditions for a UFD to be Bezout (or we can prove it directly: $\,\gcd(x,y)=1\,$ but $\,xf+y\,g = 1\Rightarrow 0 = 1,\,$ via eval at $\,x=0=y)$.
Theorem $\rm\ \ TFAE\ $ for a $\rm UFD\ D$
$(1)\ \ $ prime ideals are maximal if nonzero, $ $ i.e. $\rm\ dim\,\ D \le 1$
$(2)\ \ $ prime ideals are principal
$(3)\ \ $ maximal ideals are principal
$(4)\ \ \rm\ gcd(a,b) = 1\, \Rightarrow\, (a,b) = (1),\,$ i.e. $ $ coprime $\Rightarrow$ comaximal
$(5)\ \ $ $\rm D$ is Bezout, i.e. all ideals $\,\rm (a,b)\,$ are principal.
$(6)\ \ $ $\rm D$ is a $\rm PID$
Proof $\ $ (sketch of $\,1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 6 \Rightarrow 1)\ $ where $\rm\,p_i,\,P\,$ denote primes $\neq 0$
$(1\Rightarrow 2)$ $\rm\ \ p_1^{e_1}\cdots p_n^{e_n}\in P\,\Rightarrow\,$ some $\rm\,p_j\in P\,$ so $\rm\,P\supseteq (p_j)\, \Rightarrow\, P = (p_j)\:$ by dim $\le1$
$(2\Rightarrow 3)$ $ \ $ max ideals are prime, so principal by $(2)$
$(3\Rightarrow 4)$ $\ \rm \gcd(a,b)=1\,\Rightarrow\,(a,b) \subsetneq (p) $ for all max $\rm\,(p),\,$ so $\rm\ (a,b) = (1)$
$(4\Rightarrow 5)$ $\ \ \rm c = \gcd(a,b)\, \Rightarrow\, (a,b) = c\ (a/c,b/c) = (c)$
$(5\Rightarrow 6)$ $\ $ Ideals $\neq 0\,$ in Bezout UFDs are generated by an elt with least #prime factors
$(6\Rightarrow 1)$ $\ \ \rm (d) \supsetneq (p)$ properly $\rm\Rightarrow\,d\mid p\,$ properly $\rm\,\Rightarrow\,d\,$ unit $\,\rm\Rightarrow\,(d)=(1),\,$ so $\rm\,(p)\,$ is max
As for the gcd as the ideal sum in a PID, that follows using "contains = divides", viz.
$$ c\mid a,b\iff (c)\supseteq (a),(b)\iff (c)\supseteq (a)\!+\!(b)\!=\!(d)\iff c\mid d$$
Finally, yes: $\,d\in (a)\!+\!(b) = aR + bR $ $\iff d = ar + br'$ for some $\,r,r'\in R$