0

Let $A$ be a square matrix with diagonal entries $a_{ii} = x_i y_i$ and off-diagonal entries $a_{ij} = x_{i} y_{j} + 1$ when $i \neq j$. Here, $x_{i}, y_{j}$, for $i, j \in \{ 1,\ldots, n \}$, are $2n$ real numbers. I would like to calculate $\det (A)$.

I tried to calculate the determinant of the simpler matrix where $a_{ij}=1+x_{i}y_{j}$, and I see it equals zero. But I got nothing more when I tried to expand the new determinant for $A$.

hardmath
  • 37,015
  • I try to calculate the determinant of matrix where $a_{ij}=1+x_{i}y_{j}$ and see it equals zero . But nothing more because when I try to expands the new determinant . – Gankedbymom Jul 08 '17 at 17:08
  • I don't agree to close this question because the OP has (now) shown he has worked on the subject. – Jean Marie Jul 08 '17 at 18:01
  • I'm willing to concede the OP has worked on the problem, although the evidence for that appears in the Comments rather than in the (preferred) body of the Question. That said, this is about a rank two update to $-I$, and thus closely related to this "abstract duplicate". – hardmath Jul 08 '17 at 18:18

2 Answers2

4

Many authors use $\mathbf{J_n}$ to represent the $n\times n$ matrix of all ones entries. Since the size $n\times n$ is unchanged throughout this problem, we will omit the subscript:

$$ \mathbf J = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} $$

Let $\mathbf{x} = \begin{pmatrix} x_1 & x_2 & \cdots & x_n \end{pmatrix}^T$, $\mathbf{y} = \begin{pmatrix} y_1 & y_2 & \cdots & y_n \end{pmatrix}^T$, and $\mathbf{1} = \begin{pmatrix} 1 & 1 & \cdots & 1 \end{pmatrix}^T$, so that $\mathbf J = \mathbf 1 \mathbf 1^T$ and:

$$ \mathbf A = \mathbf J - \mathbf I + \mathbf x \mathbf y^T $$

where $\mathbf I$ is the $n\times n$ identity matrix.

The well-known matrix determinant lemma tells us:

$$ \det \mathbf A = \det(\mathbf J - \mathbf I) (1 + \mathbf y^T (\mathbf J - \mathbf I)^{-1} \mathbf x ) $$

Fortunately the key "ingredients" here have already been worked out in this highly up-voted previous Question, namely:

$$ \det(\mathbf J - \mathbf I) = (-1)^{n-1} (n-1) $$

$$ (\mathbf J - \mathbf I)^{-1} = \left( \frac{1}{n-1} \right) \mathbf J - \mathbf I $$

The interested Reader might care to work out the first of these either from the aforementioned matrix determinant lemma or from evaluation of the characteristic polynomial of $\mathbf J$. The second of these can be verified by multiplying things out, and it can be derived by the Woodbury matrix identity.

Substituting these ingredients in the preceding expression gives:

$$ \begin{align*} \det A &= \det(\mathbf J - \mathbf I ) (1 + \mathbf y^T (\mathbf J - \mathbf I)^{-1} \mathbf x ) \\ &= (-1)^{n-1} (n-1) \left(1 + \mathbf y^T \left[\left(\frac{ 1}{n-1} \right) \mathbf J - \mathbf I \right] \mathbf x \right) \\ &= (-1)^{n-1} \left(n-1 + \mathbf y^T \left[ \mathbf J - (n-1)\mathbf I\right] \mathbf x \right) \\ &= (-1)^{n-1} \left(n-1 + \mathbf y^T \left[\left(\sum x_i \right) \mathbf 1 - (n-1) \mathbf x \right] \right) \\ &= (-1)^{n-1} \left(n-1 + \left[\left(\sum x_i \right) \left(\sum y_i \right) - (n-1) \mathbf y^T \mathbf x \right] \right) \\ &= (-1)^{n-1} \left[\left(\sum x_i \right) \left(\sum y_i \right) + (n-1) (1 -\mathbf y^T \mathbf x) \right] \end{align*} \\ $$

hardmath
  • 37,015
2

Let

$$\mathrm A := 1_n 1_n^\top - \mathrm I_n + \mathrm x \mathrm y^\top = - \mathrm I_n + \begin{bmatrix} | & |\\ \mathrm x & 1_n\\ | & |\end{bmatrix} \begin{bmatrix} | & |\\ \mathrm y & 1_n\\ | & |\end{bmatrix}^\top = - \left( \mathrm I_n - \begin{bmatrix} | & |\\ \mathrm x & 1_n\\ | & |\end{bmatrix} \begin{bmatrix} | & |\\ \mathrm y & 1_n\\ | & |\end{bmatrix}^\top \right)$$

Using the Weinstein-Aronszajn determinant identity,

$$\begin{array}{rl} \det (\mathrm A) &= (-1)^n \cdot \det \left( \mathrm I_n - \begin{bmatrix} | & |\\ \mathrm x & 1_n\\ | & |\end{bmatrix} \begin{bmatrix} | & |\\ \mathrm y & 1_n\\ | & |\end{bmatrix}^\top \right)\\ &= (-1)^n \cdot \det \left( \mathrm I_2 - \begin{bmatrix} | & |\\ \mathrm y & 1_n\\ | & |\end{bmatrix}^\top \begin{bmatrix} | & |\\ \mathrm x & 1_n\\ | & |\end{bmatrix}\right)\\ &= (-1)^n \cdot \det \begin{bmatrix} (1 - \mathrm y^\top \mathrm x) & - \mathrm y^\top 1_n\\ -1_n^\top \mathrm x & (1-n)\end{bmatrix}\\ &= (-1)^n \cdot \left( (1 - \mathrm y^\top \mathrm x) (1-n) - \mathrm y^\top 1_n 1_n^\top \mathrm x \right)\\ &= (-1)^n \cdot \left( \mathrm x^\top \left( (n-1) \, \mathrm I_n - 1_n 1_n^\top \right) \mathrm y + 1-n \right)\end{array}$$

  • Doing the rank two update "all at once" is a good idea, but the vertical strokes appearing in these terms seem to be an artifact. Do you want: $$\begin{bmatrix} x & 1_n \end{bmatrix} \begin{bmatrix} y & 1_n \end{bmatrix}^T$$ – hardmath Jul 10 '17 at 15:37
  • @hardmath The vertical bars are there to remind the reader that $\rm x$ is a column vector. – Rodrigo de Azevedo Jul 10 '17 at 17:21