Below I show how the Heaviside cover-up method generalizes to handle nonlinear denominators. With numerator $\rm\:f(x)\ =\ 8x^4+15x^3+16x^2+22x+4\:,\: $ the undetermined partial fraction is
$$\rm\frac{f(x)}{x(x+1)^2(x^2+2)}\ =\ \frac{a}{x}\, + \,\frac{b\, (x+1) + c}{(x+1)^2}\, + \,\frac{d\, x+e}{x^2+2}$$
To find $\,\rm d\,x+e\,$ in the $\rm\: x^2+2\ $ fraction, clear denominators and collect factors of $\rm\: x^2 + 2\: $
$$\rm f(x)\ \ =\ \ x\ (x+1)^2\ (d\, x +\: e)\, +\, (x^2+2)\ g(x)\ ,\quad some\ \ g(x) \in \mathbb Q[x]$$
Evaluating this $\rm\bmod\, x^2 + 2,\ $ i.e.$\:$ iteratively applying the rewrite rule $\rm\ x^2 \to -2\,\ $ yields
$$\rm - 8\, x + 4\ =\: -(4\, d + e)\, x\, +\, 2\, d - 4\, e\ \iff \ d=2,\ e=0 $$
Notice this method amounts to ignoring ("covering") all the undetermined partial fractions having denominator different (i.e. coprime) from the current denominator $\rm\:p(x) = x^2+2\:$ (i.e. having different roots) then evaluating what remains at the roots of $\rm\,p(x)\,$ or, equivalently, evaluating it $\rm\bmod p(x).\,$ To avoid computing inverses $\rm\bmod p(x)\:$ we scale to clear denominators before evaluating. This is simply the higher-degree analog of the classical Heaviside method - where covering up and evaluating at $\rm\: x = r\:$ is equivalent to evaluating modulo $\rm\:x-r\:$.
Using the same method we can solve for the numerator of the $\rm\ (x+1)^2\,$ fraction
$$\rm f(x)\ =\ x\, (x^2+2)\, (b\, (x+1) + c)\, + \, (x+1)^2\ h(x)\ ,\quad some\ \ h(x) \in\mathbb Q[x]$$
Evaluating it mod $\rm\, (x+1)^2,\, $ i.e. iteratively applying rewrite rule $\rm\, x^2 \to\, -2\ x - 1\, $ yields
$$\rm 3\ x - 6\ =\ (5\, c - 3\, b)\, x\, +\, 2\, c - 3\, b\ \iff\ c = 3,\ b = 4 $$
$$...$$
); not only does it mean you don't need to break into a new paragraph, and that they are automatically centered, they also rendered larger and more readable. – Arturo Magidin Feb 24 '11 at 05:05