Regarding the ratio in $d$ dimensions, note that the hyperspheres always intersect halfway between the centres, so we're looking for the ratio of the area of a hyperspherical cap of the unit sphere of height $1/2$ to the area of the entire sphere, which can be viewed as a hyperspherical cap of height $2$. Thus, the numerical factors in the formula Rahul linked to cancel, and we're just looking for the ratio
$$
\lambda_d=\frac{\displaystyle\int_{\pi/6}^{\pi/2}\cos^{d-2}\phi\,\mathrm d\phi}{\displaystyle\int_{-\pi/2}^{\pi/2}\cos^{d-2}\phi\,\mathrm d\phi}\;.
$$
Using Wolfram|Alpha to evaluate the integrals, I get
$$
\begin{align}
\lambda_2&=\frac{\pi/3}{\pi}=\frac13\approx0.333\;,\\
\lambda_3&=\frac{1/2}{2}=\frac14=0.250\;,\\
\lambda_4&=\frac{\pi/6-\sqrt3/8}{\pi/2}=\frac13-\frac{\sqrt3}{4\pi}\approx0.196\;,\\
\lambda_5&=\frac{5/24}{4/3}=\frac5{32}\approx0.156\;,\\
\lambda_6&=\frac{\pi/8-9\sqrt3/64}{3\pi/8}=\frac13-\frac{3\sqrt3}{8\pi}\approx0.127\;.
\end{align}
$$
We can also obtain an asymptotic estimate for the ratio. In the numerator, for large $d$ the values near $\phi=\pi/6$ will dominate, and we can approximate the integrand by a decaying exponential:
$$
\begin{align}
\int_{\pi/6}^{\pi/2}\cos^{d-2}\phi\,\mathrm d\phi
&=
\int_{\pi/6}^{\pi/2}\mathrm e^{(d-2)\log\cos\phi}\,\mathrm d\phi
\\
&\approx
\int_0^\infty\mathrm e^{(d-2)(\log\cos\pi/6-\phi\tan\pi/6)}\,\mathrm d\phi
\\
&=
\left(\frac{\sqrt3}2\right)^{d-2}\frac{\sqrt3}{d-2}\;.
\end{align}
$$
In the denominator, for large $d$ the values near $\phi=0$ will dominate, and we can approximate the integrand by a Gaussian:
$$
\begin{align}
\int_{-\pi/2}^{\pi/2}\cos^{d-2}\phi\,\mathrm d\phi
&=
\int_{-\pi/2}^{\pi/2}\mathrm e^{(d-2)\log\cos\phi}\,\mathrm d\phi
\\
&\approx
\int_{-\infty}^\infty\mathrm e^{-(d-2)\phi^2/2}\,\mathrm d\phi
\\
&=
\sqrt{\frac{2\pi}{d-2}}\;.
\end{align}
$$
Thus, for large $d$ the ratio is approximately given by
$$
\lambda_n\approx\left(\frac{\sqrt3}2\right)^{d-1}\sqrt{\frac2{(d-2)\pi}}\;.
$$
For instance, for $d=26$ we have
$$
\lambda_{26}=\frac{\displaystyle\int_{\pi/6}^{\pi/2}\cos^{24}\phi\,\mathrm d\phi}{\displaystyle\int_{-\pi/2}^{\pi/2}\cos^{24}\phi\,\mathrm d\phi}\approx\frac{0.002004}{0.5064}\approx0.00396\;,
$$
and the approximation yields
$$
\lambda_{26}\approx\left(\frac{\sqrt3}2\right)^{25}\sqrt{\frac2{24\pi}}\approx0.00447\;.
$$