How can I calculate $24^{33} \mod 80$. I don't see how to start. I only know that $\phi (80) = 32$. A hint would suffice, thanks!
-
See https://math.stackexchange.com/questions/607829/get-the-last-two-digits-of-16100-and-17100 OR https://math.stackexchange.com/questions/1844558/how-to-find-last-two-digits-of-22016 – lab bhattacharjee Jun 28 '17 at 06:39
2 Answers
Hint 1: $80=2^4\cdot 5$ and $24^{33}=2^{99}\cdot 3^{33}$.
Hint 2: Chinese Remainder Theorem.
$\text{ }$
$\text{ }$
$\text{ }$
$\text{ }$
$\text{ }$
$\text{ }$
$\text{ }$
$\text{ }$
$\text{ }$
Solution: $24^{33}\equiv (-1)^{33}\equiv -1\bmod{5}$ and $24^{33}\equiv 0\pmod{16}$, hence by Chinese Remainder Theorem $24^{33}\equiv 64\bmod{80}$.

- 15,423
- 3
- 24
- 57
-
-
We can eliminate CRT by using the mod Distributive Law -- see my answer. – Bill Dubuque Jun 28 '17 at 01:11
Applying MDL $ =\, $ mod Distributive Law $ $ to factor out $\,\color{#c00}{c=16}\,$ below yields
$$ \begin{align} \color{#c00}c\:\!a\ \bmod\ \color{#c00}c\cdot n\ &=\ \ \color{#c00}c\ \ (a\bmod n)\qquad\quad\ {\rm [MDL]}\\[.2em] {\rm so}\ \ \ 16\mid 24^{33}\Rightarrow\, 24^{\large 33}\!\bmod {16\cdot 5}\, &=\, \color{#c00}{16}\:(\ 24^{\large 33}/16\ \bmod 5)\\[.2em] &=\, 16\,({(-1)^{\large 33}}\!/1\, \bmod 5)\\[.2em] &=\, \bbox[5px,border:1px solid #0a0]{\!\!\!16\,(4)} \end{align}$$
Note how much simpler this is than using CRT - it can be done purely mentally. As explained in the prior linked answer, MDL is an equivalent operational form of CRT, which proves much more convenient for calculations due to its operational form.

- 272,048