$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\int_{0}^{\infty}{\ln\pars{x} \over \pars{1 + x^{2}}^{2}}\,\dd x & =
\left.-\,
\partiald{}{a}\int_{0}^{\infty}{\ln\pars{x} \over x^{2} + a}\,\dd x
\,\right\vert_{\ a=\ 1}
\\[5mm] & =
-\,\partiald{}{a}
\bracks{a^{-1/2}\int_{0}^{\infty}{\ln\pars{a^{1/2}x} \over x^{2} + 1}\,\dd x}
_{\ a=\ 1}
\\[5mm] & =
-\,\partiald{}{a}
\bracks{{1 \over 2}\,a^{-1/2}\ln\pars{a}\int_{0}^{\infty}{\dd x \over x^{2} + 1} +
a^{-1/2}\int_{0}^{\infty}{\ln\pars{x} \over x^{2} + 1}\,\dd x}\label{1}\tag{1}
_{\ a=\ 1}
\\[5mm] & =
-\,{\pi \over 4}\,\partiald{}{a}
\bracks{a^{-1/2}\ln\pars{a}}_{\ a\ =\ 1}
\\[5mm] & =
-\,{\pi \over 4}
\bracks{-\,{1 \over 2}\,a^{-3/2}\ln\pars{a} + a^{-3/2}}_{\ a\ =\ 1} =
\bbx{-\,{\pi \over 4}}
\end{align}
The last integral in \eqref{1} vanishes out: It just changes its sign under $\ds{x \to 1/x}$.