Let $n_k$ be integers. Is there a general formula for the Taylor expansion of $\log(1+\sum_{k=1}^N n_kx^k)$ at $x=0$? This boils down to find an expression for the $m$th derivative of $\log(1+\sum_{k=1}^N n_kx^k)$ evaluated $x=0$: $$ \frac{d^m}{dx^m}\log(1+\sum_{k=1}^N n_kx^k)\Biggr|_{x=0}? $$
Expanding a (work-in-progress) example like $-\log(n_3x^3+n_2x^2+n_1x+1)$ gives: $$ \begin{array}{cl} x& (- n_1)\\ + \frac{x^2}2& (+ n_1^2 - 2n_2 ) \\ + \frac{x^3}3& (- n_1^3 + 3n_2 n_1 - 3n_3) \\ + \frac{x^4}4& (+ n_1^4 - 4n_2 n_1^2 + 4n_3 n_1 + 2n_2^2 ) \\ + \frac{x^5}5& (- n_1^5 + 5n_2 n_1^3 - 5n_3n_1^2 - 5n_2^2 n_1 + 5n_3n_2 ) \\ + \frac{x^6}6& (+ n_1^6 - 6n_2 n_1^4 + 6n_3n_1^3 + 9n_2^2n_1^2 - 12n_3n_2n_1 - 2n_2^3 +3 n_3^2 ) \\ &\dots \end{array} $$
Some findings:
For each $\frac{x^k}k$ the factor in brackets relates to partitions of $k$, which is not very surprising.
Fixing $k$ then the sign is a term inside a bracket can be determined by the sum of powers of $n_j$: Even sums are negative (e.g. $-n_1^4$) and odd sums positive (e.g. $+5n_2^2n_1$), which reminds me on Möbius' function...
From one line to the other you can see that multiplying a $n_1$ to the second term adds $1$ to the prefactor (and changes sign)