Because $$ \sum _{k=1}^{n/2} \frac{n!}{k!k!(n-2k)!}a^kb^kc^{n-2k}=
c^n \sum _{k=1}^{n/2}{n\choose k}{n-k\choose n-2k} \left(\frac{ab}{c^2} \right)^k$$
we want to study the asymptotic behaviour of the sum with term
$$g(k) = {n\choose k}{n-k\choose n-2k} d^k \tag{1}$$
for $0<k<\frac{n}{2}$ and $d=a b /c^2>0$
The first difference $g_1(k)=g(k+1)-g(k)$ is
$$g_1(k)=g(k) \left(\frac{(n-2k)(n-2k-1)}{(k+1)^2} d -1\right) \tag{2}$$
Equating to zero, we get the "critical" index which corresponds to the maximum of $g(k)$
$$k_0=n \frac{1}{2+1/\sqrt{d}} + \frac{\sqrt{d}+2}{4\sqrt{d}+2} + O(n^{-1}) \approx n \frac{1}{2+1/\sqrt{d}} \tag{3} $$
In the same way, we can compute the second difference
$$ \frac{g_2(k)}{g(k)} = \frac{\left( n-2k\right) \,\left( n-2k-1\right) d}{{{\left( k+1\right) }^{2}}}-2+\frac{{{k}^{2}}}{d\,\left( n-2k+1\right) \,\left( n-2k+2\right) } \triangleq h(n,k,d) \tag{4}$$
Now, we want
$$S(n,d)\triangleq \sum_k g(k) \approx \int g(x) dx \tag{5}$$
To get the asymptotics we write the above integral in a form apt for Laplace method:
$$ \int e^{n f(x)} dx \tag{6}$$
with $$f(x)=\frac{\log(g(x))}{n}$$
Laplace method is not really justified her, because $f(x)$ depends on $n$... but we hope it works anyway ($f(x)$ depends rather weakly on $n$). Then we get
$$S(n,d) \approx \sqrt {\frac{2\pi}{n |f''(x_0)|}} e^{n f(x_0)} = \sqrt {\frac{2\pi}{|g''(k_0)/g(k_0)|}} g(k_0) \tag{7}$$
where the last equality comes from $$f''(x)=\frac{1}{n}\left( \frac{g g'' -(g´)^2 }{g^2}\right) \implies
f''(x_0)= \frac{1}{n} \frac{g''(x_0)}{g(x_0)} $$
Now, using Stirling approximation:
$$ g(k)\approx \frac{n^n}{k^{2k}(n-2k)^{n-2k} 2 \pi } \sqrt{\frac{n}{k^2(n-2k)}} d^k \tag{8}$$
So finally
$$S(n,d)\approx \sqrt {\frac{2\pi}{|h(n,k_0,d)|} } \frac{n^n}{2 \pi k_0^{2k_0}(n-2k_0)^{n-2k_0} } \sqrt{\frac{n}{k_0^2(n-2k_0)}} d^{k_0} \tag{9}$$
where $k_0$ is given by $(3)$ and $h(n,k_0,d)$ by $(4)$
This gives a good approximation, especially for large $n$.
Alternatively, $h(n,k_0,d)$ can be replaced by the first term of its asympotic expansion (in $n^{-1}$) :
$$h(n,k_0,d)\approx -\frac{2}{n}(4 \sqrt{d}+4+\frac{1}{\sqrt{d}}) \tag{10}$$
For some strange reason (fortuitous cancelling I guess), this approximation works numerically better.
Some numerical examples below - "exact" value corresponds to $\log(S(n,d))$. Approximation $1$ corresponds to $(9)$ (with $(3)$ and $(4)$), approx 2
uses $(10)$.
n d exact approx 1 approx 2
--------------------------------------------------------
10 0.01 0.693147 1.130952 0.648864
50 0.01 7.145196 7.279219 7.137008
400 0.01 69.91077 69.92988 69.90983
10 0.50 6.994850 7.243550 7.010905
50 0.50 41.45789 41.51482 41.46112
400 0.50 348.9017 348.9091 348.9021
10 1.00 9.099744 9.362582 9.118624
50 1.00 52.25464 52.31559 52.25839
400 1.00 435.7325 435.7404 435.7329
10 10.0 17.92682 18.29466 17.91549
50 10.0 96.75546 96.86896 96.76006
400 10.0 792.6511 792.6670 792.6517