11

Evaluate $$\int_{0}^{\infty} \frac{\cos x - e^{-x}}{x} \ dx$$

jimjim
  • 9,675
user 1591719
  • 44,216
  • 12
  • 105
  • 255

2 Answers2

14

To use your technique: $$J(a)=\int_0^\infty\frac{\cos x-e^{-x}}{x}e^{-ax}dx$$ then $$dJ/da=\int_0^\infty(\cos x e^{-ax} -e^{-(1+a)x})dx=a/(a^2+1)-1/(a+1)$$ hence $J(a)=\frac12\log(a^2+1)-\log(a+1)+C$. $C$ can be determined by $J(a)\to 0$ as $a\to\infty$, hence $C=0$ and $J(0)=0$.

Did
  • 279,727
user8268
  • 21,348
  • It remains to show that $\int^\infty_0\frac{\cos x-e^{-x}}{x},dx$ indeed converges (as an improper integral) so that the limit $a\rightarrow0$ can be moved inside the integral. For example $\int^\infty_0e^{-at}\cos x,dx=\frac{a}{a^s+1}\rightarrow0$ as $a\rightarrow0$ however $\int^\infty_0\cos x,dx$ does not converge (as an improper integral) – Mittens May 24 '23 at 17:00
3

$$\int_0^\infty {{{\cos x - {e^{ - x}}} \over x}dx} = \int_0^\infty {\left( {{s \over {1 + {s^2}}} - {1 \over {1 + s}}} \right)ds} = \mathop {\lim }\limits_{s \to \infty } \log {{\sqrt {{s^2} + 1} } \over {s + 1}} = 0$$

Pedro
  • 122,002
Aliakbar
  • 3,167
  • 2
  • 17
  • 27
  • 3
    Maybe some words about the Laplace Transform being taken? Where did the $x^{-1}$ term go? – Pedro Dec 08 '12 at 15:09