You can prove it uniformly for all three primes as in the following
Theorem, which implies that $\,5\cdot 7\cdot 13\mid a^{13}-a\,$ so also $\,a^2(a^{13}-a) = a^{15}-a^3$
Theorem $\ $ For natural numbers $\rm\:a,e,n\:$ with $\rm\:e,n>1$
$\qquad\rm n\:|\:a^{\large e}-a\:$ for all $\rm\:a\:\iff n\:$ is squarefree, and prime $\rm\:p\:|\:n\:\Rightarrow\: p\!-\!1\:|\:e\!-\!1$
Proof $\ (\Leftarrow)\ \ $ Since a squarefree natural divides another iff all its
prime factors do, we need only show $\rm\:p\:|\:a^{\large e}\!-\!a\:$ for each prime $\rm\:p\:|\:n,\:$ or,
that $\rm\:a \not\equiv 0\:\Rightarrow\: a^{\large e-1} \equiv 1\pmod p,\:$ which, since $\rm\:p\!-\!1\:|\:e\!-\!1,\:$ follows
from $\rm\:a \not\equiv 0\:$ $\Rightarrow$ $\rm\: a^{\large p-1} \equiv 1 \pmod p,\:$ by little Fermat.
$(\Rightarrow)\ \ $ See this answer (not required here).