$$H = \{z : z \in \mathbb{C}^*, \ \ \left\lvert z + \frac1z \right\rvert = a \}$$ Find the minimum and maximum value of $|z|$ such that $z \in H$
$$a^2 = \left\lvert z + \frac1z \right\rvert^2 = \left(z + \frac1z\right)\left(\overline z + \frac1{\overline z} \right) = |z|^2 + {z^2 + \overline z^2 \over |z|^2} + {1 \over |z|^2} = {|z|^4 - |z|^2(2) + (z + \overline z)^2 + 1 \over |z|^2 }$$
Hence, $$|z|^4 - |z|^2 \cdot(a^2 + 2) + 1 = -(z + \overline z)^2 \le 0$$
Thus,
$$|z|^2 \in \left[{a^2 + 2 - \sqrt{a^4 + 4a^2}\over 2}, {a^2 + 2 + \sqrt{a^4 + 4a^2}\over 2}\right] \tag{3}$$
$$|z| \in \left[{-a + \sqrt{a^2 + 4}\over 2}, {a + \sqrt{a^2 + 4}\over 2}\right] \tag{4}$$
- How did we get from (3) to (4) ?