This can be done in $15$ seconds of purely mental modular arithmetic of small numbers using the universal divisibility test, which is essentially the division algorithm ignoring quotients. To obtain optimal speedup we use least magnitude remainders, e.g. $-1$ vs. $16\pmod{\!17}$ since doing so simplifies subsequent arithmetic. To reduce a decimal number mod $n$ we continually mod out the leading chunks of its digits. Since we allow negative remainders, we will encounter negative digits, delimited by a comma, e.g. $\,a,b := a(10)\!+\!b.\,$ We prove $\ 3247\equiv 0\pmod{\!17}\,$ for practice.
$\begin{align}{\rm mod}\ 17\!:\qquad
&\,\ \color{#90f}{32}\ 47\\
\equiv\ &{\color{#90f}{-2}},\color{#0a0}47 \ \ \ \text{by }\ \ \ \ \ \,\color{#90f}{32}\,\equiv\,\color{#90f}{-2} \\
\equiv\ &\quad\ \ \, \color{#f84}{\bf 1}7\ \ \ \text{by }\ {\color{#90f}{-2}},\color{#0a0}4 \equiv\, \color{#90f}{{-}2}(10)\!+\!\color{#0a0}4\equiv -16\equiv \color{#f84}{\bf 1} \\[-.3em]
\text{Let's do the number in the OP}\qquad\ \ \ \ \\[-.3em]
&\,\ \color{#90f}{29}\ 01\\
\equiv\ & {\color{#90f}{-5}},\color{#0a0}01\ \ \text{ by }\quad \color{#90f}{29\,\equiv\, -5} \\
\equiv\ &\quad\ \ \color{#f84}{\bf 1}1\ \ \, \text{ by }\ \color{#90f}{{-}5},\color{#0a0}0\equiv {\color{#90f}{-5}(10)\!+\!\color{#0a0}0}\equiv -50\equiv\color{#f84}{\bf 1}\\
\equiv\ &\quad \,\color{#08f}{-6}\\[-.2em]
\text{Similarly $\,2017\equiv\color{#c00}{-6}\ $ so we have}\phantom{MM}\\[-.2em]
&\ 29\cdot 2901\cdot 2017\\
\equiv\ &(-5)(\color{#08f}{-6})(\color{#c00}{-6})\\
\equiv\ &(-5)\ \color{#08f} 2\\
\equiv\ &\ 7 \end{align}\qquad\qquad$
where we have applied the Congruence Product and Sum Rules many times above.
Remark $ $ I wrote every little detail above to help avoid confusion with negative digits. Once one gains proficiency there is no need to be so extremely verbose. See here for a larger example which also employs negative digits for optimization.