(Note: This is the case $a=\frac14$ of ${_2F_1\left(a ,a ;a +\tfrac12;-u\right)}=2^{a}\frac{\Gamma\big(a+\tfrac12\big)}{\sqrt\pi\,\Gamma(a)}\int_0^\infty\frac{dx}{(1+2u+\cosh x)^a}.\,$ There is also $a=\frac13$ and $a=\frac16$.)
In a post, Reshetnikov considered some integrals and their equivalent forms, $$\frac{1}{2\sqrt2\,K(k_1)}\,\int_0^1 \frac{dx}{\sqrt{1-x}\,\sqrt[4]{x^3+\color{blue}{3}x^4}}=\,_2F_1\big(\tfrac{1}{4},\tfrac{1}{4};\tfrac{3}{4};-\color{blue}3\big) = \frac{2}{3^{3/4}}\tag1$$ $$\frac{1}{2\sqrt2\,K(k_1)}\,\int_0^1 \frac{dx}{\sqrt{1-x}\,\sqrt[4]{x^3+\color{blue}{80}x^4}}=\,_2F_1\big(\tfrac{1}{4},\tfrac{1}{4};\tfrac{3}{4};-\color{blue}{80}\big) = \frac35\tag2$$
Just like for the case $a=\tfrac13$, we postulate these are just the first of an infinite family of algebraic numbers $\alpha$ and $\beta$ such that,
$$_2F_1\left(\frac14,\frac14;\frac34;-\alpha\right)=\beta\tag3$$
The table below summarizes results and show some quartic trends,
$$\begin{array}{|c|c|c|c|c|} \hline p&\tau&\alpha(\tau)&\beta(\tau)&\text{Deg}\\ \hline 3&\frac{1+3\sqrt{-1}}2&4\cdot1^4-1=\color{blue}{3}& \large\frac2{3^{3/4}} &1\\ 5&\frac{1+5\sqrt{-1}}2&3^4-1=\color{blue}{80}& \large\frac35 &1\\ 7&\frac{1+7\sqrt{-1}}2&4(2+\sqrt7)^4-1& \large\frac4{7^{7/8}} \frac1{(8+3\sqrt7)^{1/4}} &2\\ 11&\frac{1+11\sqrt{-1}}2&4u^4 - 1 &\large \frac6{11^{11/12}}\Big(\frac{11^{2/3}-(14-6\sqrt3)^{1/3}-(14+6\sqrt3)^{1/3}}{3}\Big) &3 \\ 13&\frac{1+13\sqrt{-1}}2& v^4-1 &\large \frac7{13^{2/3}}\Big(\frac{13^{-1/3}+(-2+6\sqrt3)^{1/3}-(2+6\sqrt3)^{1/3}}{3}\Big) &3 \\ 17&\frac{1+17\sqrt{-1}}2& x_1^4 - 1 & \large \frac9{17}x_2 &4 \\ 19&\frac{1+19\sqrt{-1}}2& 4y_1^4 - 1 & \large \frac{10}{19}y_2^{1/4} &5 \\ \hline \end{array}$$
and fundamental unit $U_7=8+3\sqrt7$, with $u,v$ as the real root of the cubics, $$u^3 - 23u^2 + 15u - 9=0\\v^3 - 67v^2 - 159v - 99=0$$ and $x_i$ as roots of quartics, and $y_i$ as roots of quintics, and so on. $\text{Deg}$ is degree of $\alpha(\tau)$ and $\beta^4(\tau)$.
Conjecture: Let $\tau = \frac{1+p\sqrt{-1}}{2}$. To find $\alpha$, define the eta quotient $\displaystyle\lambda=\frac{\sqrt2\,\eta(2\tau)}{\zeta_{48}\,\eta(\tau)}$ with $\zeta_{48} = e^{2\pi i/48}$. Then, like the case $a=\tfrac13$, $\alpha$ also is a quadratic of similar form, $$16\cdot64\,\alpha(1+\alpha)=\left( \lambda^{12} -64\, \lambda^{-12} \right)^2$$ with analogous root, $$\alpha= \frac1{4\sqrt{64}}\big(\lambda^6-\sqrt{64}\,\lambda^{-6}\big)^2\tag4$$ And if $p=4k\pm1$ is a prime, then $\alpha$ and $\beta^4$ of $(3)$ are algebraic numbers of degree $k$.
Questions:
- How do we prove the conjecture? (And the analogous one in the other post?)
Is there a third family of this group with infinitely many algebraic numbers $\alpha_3$ and $\beta_3$?
$\color{green}{Update}:$
It seems there is a third family. The obvious choices are $a=\frac12$ and $a=\frac16$. For the latter, and using a better search method, I found,
$$_2F_1\Big(\frac{1}{6},\frac{1}{6};\frac{2}{3};-\frac{125}3\Big) = \frac{2}{3^{5/6}}$$
See case $a=\frac16$ here.