As pointed out by user1952009, we can look at the norm of the ideal $(\alpha) \subset \Bbb Z[\zeta_n]$.
Definition.
Let $K$ be a number field and let $I$ be a non-zero ideal of $\mathcal O_K$. Then the (absolute) norm of $I$ is defined as the cardinality of the quotient ring $\mathcal O_K / I$, which is finite.
Proposition. Let $x \in \mathcal O_K$ be non-zero. Then
$$N( x\mathcal O_K) = |N_{K/\Bbb Q}(x)|$$
Finally, if $\alpha$ has a prime norm, then the ideal $(\alpha)$ has a prime absolute norm, say $p$, which means that the ring $\mathcal O_K/(\alpha)$ has $p$ elements. It implies that this ring is the field $\Bbb F_p$ (see also here), and $(\alpha)$ is a maximal ideal of $\mathcal O_K$ and $\alpha$ is prime in $\mathcal O_K$.