Let $m \in \mathbb{N}$. Show that $\,a \text{ R } b \Leftrightarrow a \equiv b \text{ }(\text{mod } m)\,$ is an equivalence realtion.
We need to show 3 things:
(i) reflexive: $\forall a \in \mathbb{Z}: a \equiv a \text{ mod } m$
(ii) symmetric: $\forall a,b \in \mathbb{Z}: a \equiv b \text{ mod } m \text{ } \Rightarrow b \equiv a \text{ mod } m$
(iii) transitive: $\forall a,b,c \in \mathbb{Z}: a \equiv b \text{ mod } m \text{ } \wedge b \equiv c \text{ mod } m \Rightarrow a \equiv c \text{ mod } m$
So I tried it like this:
(i) $m \text{ | } 0 \Rightarrow m \text{ | } a-a \Rightarrow a \equiv a \text{ mod } m$
(ii) $a \equiv b \text{ mod } m \Rightarrow a \text{ mod } m = b \text{ mod } m \Rightarrow b\text{ mod } m = a \text{ mod } m \Rightarrow b \equiv a \text{ mod } m$
(iii) $a \equiv b \text{ mod } m \text{ } \wedge \text{ }b \equiv c \text{ mod } m \Rightarrow m \text{ | } (a-b) \text{ } \wedge \text{ } m \text{ | } (b-c) \Rightarrow m \text{ | } (a-b) + (b-c) \Rightarrow m \text{ | } a-c \Rightarrow a \equiv c \text{ mod } m$
Because every condition is fulfilled, we are done (?)
Please help me and tell me if it would be correct like this? Maybe there is better way to prove it?