Hint: we can $\rm\color{#c00}{double}$ an $\rm\color{#0a0}{even\ modulus}$ when $\rm\color{#c00}{squaring}$ a congruence, by the Lemma below.
Thus odd $\,n\equiv \pm1\pmod{\!4}\Rightarrow n^2\equiv 1^2\pmod{\!8}\Rightarrow n^4\equiv 1^4\pmod{\!16}. \ \ \small\bf QED$
Lemma $\ \ a\equiv b\pmod{\!\color{#0a0}{2n}}\,\Rightarrow\, a^{\large\color{#c00}2}\equiv b^{\large \color{#c00}2}\pmod{\!\color{#c00}2\cdot\color{#0a0}{2n}}\ $
Proof $\:\ \color{#0a0}{2\mid 2n\mid a\!-\!b}\,\Rightarrow\,\color{#90f}{2\mid a\!+\!b}\,\Rightarrow\,\color{#90f}2\cdot\color{#0a0}{2n}\mid(\color{#0a0}{a\!-\!b})(\color{#90f}{a\!+\!b})=a^{\large 2}-b^2$
Remark $ $ More generally the Lemma is a special case of LTE = Lifting The Exponent.
If $n$ is odd then $n$ is of the form $4k-1$ or $4k+1$.
– Ángel Mario Gallegos Nov 19 '16 at 01:18