$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\left.\sum_{k = 0}^{\infty}{n \choose 4k}
\,\right\vert_{\ n\ \in\ \mathbb{N}_{\large n\ \geq\ 0}} & =
\sum_{k = 0}^{\infty}{n \choose k}{1^{k} + \pars{-1}^{k} + \ic^{k} + \pars{-\ic}^{k} \over 4}
\\[5mm] & =
{1 \over 4}\sum_{k = 0}^{\infty}{n \choose k}\pars{1}^{k} +
{1 \over 4}\sum_{k = 0}^{\infty}{n \choose k}\pars{-1}^{k} +
{1 \over 2}\,\Re\sum_{k = 0}^{\infty}{n \choose k}\ic^{k}
\\[5mm] & =
{1 \over 4}\pars{1 + 1}^{n} + {1 \over 4}\bracks{1 + \pars{-1}}^{n} +
{1 \over 2}\,\Re\pars{1 + \ic}^{n}
\\[5mm] & =
2^{n - 2} + {1 \over 4}\,\delta_{n0} +
{1 \over 2}\,\Re\bracks{\root{1^{2} + 1^{2}}\expo{\ic\arctan\pars{1/1}}}^{n}
\\[5mm] & =
2^{n - 2} + {1 \over 4}\,\delta_{n0} +
{1 \over 2}\,\Re\bracks{2^{1/2}\expo{\ic\pi/4}}^{n}
\\[5mm] & =
\bbx{2^{n - 2} + {1 \over 4}\,\delta_{n0} +
2^{n/2 - 1}\cos\pars{n\pi \over 4}}
\end{align}
Note tat it yields the correct value when $\ds{n = 0}$.