Lemma: Suppose $\lim\limits_{x\to0}xy(x)=a$, then
$$
\lim_{x\to0}(1+x)^y=e^a\tag{1}
$$
Proof: For any $\epsilon\gt0$, there is a $\delta\gt0$ so that if $|x|\le\delta$, then
$$
a-\epsilon\le xy\le a+\epsilon\tag{2}
$$
Then, for $|x|\le\delta$,
$$
(1+x)^{\frac{a-\epsilon}x}\le(1+x)^y\le(1+x)^{\frac{a+\epsilon}x}\tag{3}
$$
and taking the limit of $(3)$ as $x\to0$, we get
$$
e^{a-\epsilon}\le\lim_{x\to0}(1+x)^y\le e^{a+\epsilon}\tag{4}
$$
Since $(4)$ is true for any $\epsilon\gt0$, we have $(1)$.
QED
As shown in this answer,
$$
\lim_{x\to0}\frac{x-\sin(x)}{x-\tan(x)}=-\frac12\tag{5}
$$
Applying $\frac1{1-x}$, which is continuous at $x=-\frac12$, to $(5)$ yields
$$
\lim_{x\to0}\frac{\tan(x)-x}{\tan(x)-\sin(x)}=\frac23\tag{6}
$$
Since $\frac{\tan(x)-\sin(x)}{\sin^3(x)}=\frac1{\cos(x)(\cos(x)+1)}$, we get
$$
\begin{align}
\lim_{x\to0}\frac{\tan(x)-x}{x\sin^2(x)}
&=\left(\lim_{x\to0}\frac{\tan(x)-x}{\tan(x)-\sin(x)}\right)\left(\lim_{x\to0}\frac{\tan(x)-\sin(x)}{\sin^3(x)}\right)\left(\lim_{x\to0}\frac{\sin(x)}x\right)\\
&=\frac23\cdot\frac12\cdot1\\[3pt]
&=\frac13\tag{7}
\end{align}
$$
Therefore, applying $(1)$ and $(7)$, we get
$$
\begin{align}
\lim_{x\to0}\left(\frac{\tan(x)}x\right)^{1/\sin^2(x)}
&=\lim_{x\to0}\left(1+\frac{\tan(x)-x}x\right)^{1/\sin^2(x)}\\[6pt]
&=e^{1/3}\tag{8}
\end{align}
$$