I find a lot of topics concerning $\zeta(0) = \frac{-1}{2}$ but most of them use gamma function $\Gamma$. However, I encouter one problem :
Notice that $\zeta(s) < 0$ for any $0 < s < 1$ where $s \in \mathbb{R}$. Then $$\zeta(0) = \frac{-1}{2}.$$
Since $$\zeta(s) = \frac{1}{1 - 2^{1-s}} \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s}$$ for $0 < s < 1.$
Proof Set $$S_N = \sum_{n=1}^N \frac{(-1)^{n-1}}{n^s}.$$ Then $S_{2k} > 1 - \frac{1}{2^s}$ for any $k$. By alternating test, the serie $S_n$ converges, so as any of its subsequence. So $S_{2k}$ converges and its limits greater than or equal to $0$. Since $$\frac{1}{1-2^{1-s}} < 0 $$ for any $s \in (0,1)$, then $$\zeta(s) \leq 0$$ for any $s \in (0,1).$
How to get rid of $=$ from $\leq$?
Another thing is $S_{2k}$ is an increasing sequence, since I want to show that $\zeta(0) = \frac{-1}{2}$, I need to show that $$\lim_{s \rightarrow 0^+} \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s} = 1.$$
Note: I also have another form of $\zeta(s), s \in (0,1),$ $$\zeta(s) = 1 + \frac{1}{s-1} - s\int_{1}^\infty \frac{t - [t]}{t^{s+1}}dt$$ where $[t]$ is the integer part of $t$. But I think the form I use above is simpler.