Hint $\rm\, \ a,b\mid m\iff ab\mid am,bm
\!\!\overset{\rm\color{#0a0} U\!\!}\iff ab\mid \overbrace{(am,bm)}^{\large \color{#c00}{ (a,\,b)\,m}}\!\iff ab/(a,b)\mid m$
Remark $\ $ We used $\rm\color{#0a0} U$= gcd Universal Property and gcd distributive law $\rm\:\color{#c00}{(a,b)\,c} = (ac,bc).\, $ If above we use Bezout's Identity to replace the gcd $\rm\:(a,b)\:$ by $\rm\:j\,a + k\,b\:$ (its linear representation) then we obtain the proof by Bezout in lhf's answer (here in divisibility language).
The above proof is more general than Bezout-based proofs since there are rings with gcds not of linear (Bezout) form, e.g. $\,\rm \Bbb Z[x,y]\,$ the ring of polynomials in $\,\rm x,y\,$ with integer coefficients, where $\,\rm gcd(x,y) = 1\,$ but $\rm\, x\, f + y\, g\neq 1\,$ (else evaluating at $\rm\,x,y = 0\,$ yields $\,0 = 1).\,$
The proof shows that $\rm\ a,b\mid m\iff ab/(a,b)\mid m,\ $ i.e. $\ \rm lcm(a,b) = ab/(a,b)\ $ using the universal definition of lcm. $ $ The OP is the special case $\rm\,(a,b)= 1.$