Let $D$ be a GCD domain, and let $a,b,x \in D \setminus \{0\}$. Then is it true that $\gcd (ax,bx)=x \cdot \gcd (a,b)$ ?
Let $c=\gcd (a,b)$ and $d=\gcd(ax,bx)$, then as $cx|ax$ and $cx|bx$ so $cx|d$. We would be done if we could show $d|cx$, but I am unable to show that. Please help me to solve this problem.