Determine whether the series converges absolutely, conditionally or diverges?
$$\sum\limits_{n= 1}^{\infty} (-1)^{n-1} \frac{\ln(n)}{n}$$
I know that $\sum|a_{n}|$ diverges by using the comparison test:
$$\frac{\ln(n)}{n} > \frac{1}{n}$$ and the smaller, r.h.s being the divergent harmonic series.
So, should my conclusion for the alternating series be divergent or convergent conditionally*?
* How to estimate whether the alternating series terms are cancelling?
$$\begin{align} \sum_{n=1}^{2N}\frac{(-1)^{n-1}\log(n)}{n}&=-\log(2)\sum_{n=1}^N \frac1n +\sum_{n=N+1}^{2N}\frac{\log(n)}{n}\\ &=-\log(2)\left(\log(N)+\gamma +O\left(\frac1N\right)\right)+\int_N^{2N}\frac{\log(x)}{x},dx+O\left(\frac{\log(N)}{N}\right)\\ &=-\log(2)\left(\log(N)+\gamma +O\left(\frac1N\right)\right)\\ &+\frac12 \left(\log^2(2N)-\log^2(N)\right)\\ &+O\left(\frac{\log(N)}{N}\right)\\ &=\frac12\log^2(2)-\gamma \log(2)+O\left(\frac{\log(N)}{N}\right) \end{align}$$
Now let $N\to \infty$.
– Mark Viola Jun 11 '20 at 16:55