Suppose we seek to evaluate
$$(-1)^n \sum_{k=0}^n (-1)^{k}
{n\choose k} {n+k\choose k} \frac{1}{k+2}.$$
This is
$$\frac{(-1)^n}{n+1} \sum_{k=0}^n (-1)^{k}
{n+1\choose k+1} {n+k\choose k} \frac{k+1}{k+2}
\\ = \frac{(-1)^n}{n+1} \sum_{k=0}^n (-1)^{k}
{n+1\choose k+1} {n+k\choose k} \left(1- \frac{1}{k+2}\right).$$
The first piece here is
$$\frac{(-1)^n}{n+1} \sum_{k=0}^n (-1)^{k}
{n+1\choose k+1} {n+k\choose k}$$
and the second
$$ \frac{(-1)^n}{n+1} \sum_{k=0}^n (-1)^{k}
{n+1\choose k+1} {n+k\choose k} \frac{1}{k+2}
\\ = \frac{(-1)^n}{(n+1)(n+2)} \sum_{k=0}^n (-1)^{k}
{n+2\choose k+2} {n+k\choose k}.$$
Re-write the first piece as
$$\frac{(-1)^{n+1}}{n+1} \sum_{k=1}^{n+1} (-1)^{k}
{n+1\choose k} {n+k-1\choose k-1}$$
Introduce
$${n+k-1\choose k-1} =
\frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{k}} (1+z)^{n+k-1} \; dz.$$
This vanishes when $k=0$ so we may lower the index to zero to get for
the sum
$$\frac{(-1)^{n+1}}{n+1}\frac{1}{2\pi i}
\int_{|z|=\epsilon} (1+z)^{n-1}
\sum_{k=0}^{n+1} {n+1\choose k} (-1)^k \frac{(1+z)^k}{z^k}
\; dz
\\ = \frac{(-1)^{n+1}}{n+1}\frac{1}{2\pi i}
\int_{|z|=\epsilon} (1+z)^{n-1}
\left(1-\frac{1+z}{z}\right)^{n+1}
\; dz
\\ = \frac{(-1)^{n+1}}{n+1}\frac{1}{2\pi i}
\int_{|z|=\epsilon} (1+z)^{n-1}
\frac{(-1)^{n+1}}{z^{n+1}}
\; dz.$$
This is $$\frac{(-1)^{n+1}}{n+1}(-1)^{n+1} [z^n] (1+z)^{n-1} = 0$$
for $n\ge 1$. For $n=0$ we get
$$\frac{(-1)^{n+1}}{n+1}(-1)^{n+1}
[z^0] \frac{1}{1+z} = 1.$$
Re-write the second piece as
$$\frac{(-1)^n}{(n+1)(n+2)} \sum_{k=2}^{n+2} (-1)^{k}
{n+2\choose k} {n+k-2\choose k-2}.$$
Introduce
$${n+k-2\choose k-2} =
\frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{k-1}} (1+z)^{n+k-2} \; dz.$$
This vanishes when $k=1$ and $k=0$ so we may lower the limit of the
sum to zero, getting for the sum
$$\frac{(-1)^n}{(n+1)(n+2)}
\frac{1}{2\pi i}
\int_{|z|=\epsilon} z (1+z)^{n-2}
\sum_{k=0}^{n+2} {n+2\choose k} (-1)^k \frac{(1+z)^k}{z^k}
\; dz
\\ = \frac{(-1)^n}{(n+1)(n+2)}
\frac{1}{2\pi i}
\int_{|z|=\epsilon} z (1+z)^{n-2}
\left(1-\frac{1+z}{z}\right)^{n+2}
\; dz
\\ = \frac{(-1)^n}{(n+1)(n+2)}
\frac{1}{2\pi i}
\int_{|z|=\epsilon} z (1+z)^{n-2}
\frac{(-1)^{n+2}}{z^{n+2}}
\; dz
\\ = \frac{(-1)^n}{(n+1)(n+2)}
\frac{1}{2\pi i}
\int_{|z|=\epsilon} (1+z)^{n-2}
\frac{(-1)^{n+2}}{z^{n+1}}
\; dz.$$
This is $$\frac{(-1)^n}{(n+1)(n+2)} (-1)^{n+2}
[z^n] (1+z)^{n-2} = 0$$
for $n\ge 2.$ For $n=0$ we get
$$\frac{(-1)^n}{(n+1)(n+2)} (-1)^{n+2}
[z^0] \frac{1}{(1+z)^2} = \frac{1}{2}.$$
For $n=1$ we get
$$\frac{(-1)^n}{(n+1)(n+2)} (-1)^{n+2}
[z^1] \frac{1}{1+z} = - \frac{1}{6}.$$
Collecting everything we get $1/2$ for $n=0$ and $1/6$ for $n=1$ and
zero otherwise.