I have managed to construct the following bound for $e$, which is defined as the unique positive number such that $\int_1^e \frac{dx}x = 1$.
$$\left ( 1+\frac{1}{n} \right )^n \leq e \leq \left (\frac{n}{n-1} \right )^n$$
From here, there must surely be a way to deduce the well-known equality
$$\lim_{n \rightarrow \infty} \left ( 1+ \frac{1}{n} \right )^n = e$$
I have come up with the following, but I am not absolutely certain if this is correct or not.
PROPOSED SOLUTION:
The lower bound is fine as it is, so we shall leave it alone. Note that
$$\begin{align*} \left ( \frac{n}{n-1} \right )^n &= \left ( 1+\frac{1}{n-1} \right )^{n} \\ &= \left ( 1+\frac{1}{n-1} \right )^{n-1} \left ( 1+\frac{1}{n-1} \right ) \end{align*}$$
So using the fact that the limit distributes over multiplication, we have
$$\lim_{n \rightarrow \infty} \left ( \frac{n}{n-1} \right )^n = \lim_{n \rightarrow \infty} \left ( 1+\frac{1}{n-1} \right )^{n-1} \lim_{n \rightarrow \infty} \left ( 1+\frac{1}{n-1} \right ) $$
Since $$\lim_{n \rightarrow \infty} \left ( 1+\frac{1}{n-1} \right ) = 1 $$
and
$$\lim_{n \rightarrow \infty} \left ( 1+\frac{1}{n-1} \right )^{n-1} = \lim_{m \rightarrow \infty} \left ( 1+\frac{1}{m} \right )^m = e $$
We then have the required result
$$\lim_{n \rightarrow \infty} \left ( 1+ \frac{1}{n} \right )^n = e$$