Let's represent the rotation matrix $R$ in terms of its row vectors:
$$
R = \begin{bmatrix}
R_1\\
R_2\\
R_3
\end{bmatrix}
$$
From this, we get $Ra$ and $Rb$ as the following:
$$
Ra = \begin{bmatrix}
R_1 \cdot a \\
R_2 \cdot a \\
R_3 \cdot a
\end{bmatrix}
$$
$$
Rb = \begin{bmatrix}
R_1 \cdot b \\
R_2 \cdot b \\
R_3 \cdot b
\end{bmatrix}
$$
By the analytical definition of the cross product, we have
$$
Ra \times Rb = \begin{bmatrix}
(R_2 \cdot a)(R_3 \cdot b) - (R_3 \cdot a)(R_2 \cdot b) \\
(R_3 \cdot a)(R_1 \cdot b) - (R_1 \cdot a)(R_3 \cdot b) \\
(R_1 \cdot a)(R_2 \cdot b) - (R_2 \cdot a)(R_1 \cdot b)
\end{bmatrix}
$$
It can be then shown that the following identity is true for vectors $A$, $B$, $C$, and $D$:
$$
(A \cdot C)(B \cdot D) - (A \cdot D)(B \cdot C) = (A \times B) \cdot (C \times D)
$$
allowing for
$$
\begin{bmatrix}
(R_2 \cdot a)(R_3 \cdot b) - (R_3 \cdot a)(R_2 \cdot b) \\
(R_3 \cdot a)(R_1 \cdot b) - (R_1 \cdot a)(R_3 \cdot b) \\
(R_1 \cdot a)(R_2 \cdot b) - (R_2 \cdot a)(R_1 \cdot b)
\end{bmatrix} = \begin{bmatrix}
(R_2 \times R_3)\cdot(a \times b)\\
(R_3 \times R_1)\cdot(a \times b) \\
(R_1 \times R_2)\cdot(a \times b)
\end{bmatrix}
$$
Now, for a 3x3 matrix $
M = \begin{bmatrix}
M_1\\
M_2\\
M_3
\end{bmatrix}
$, we know
$$ det(M) = (M_1 \times M_2) \cdot M_3 $$
Since performing one row swapping on $M$ negates the determinant, taking two row swaps will double-negate the determinant. From this, we can show that
$$
det(M) = (M_1 \times M_2) \cdot M_3 = (M_2 \times M_3) \cdot M_1 = (M_3 \times M_1) \cdot M_2
$$
Additionally, since $R$ is a rotation matrix, we know that the length of each row of $R$ is 1. This means that $R_i \cdot R_i = 1$ for each ith row of $R$. Taking this into consideration,
$$ (R_1 \times R_2) \cdot R_3 = R_3 \cdot R_3 $$
and thus
$$ (R_1 \times R_2) = R_3 $$
Baring this in mind without loss of generality, this allows
$$
\begin{bmatrix}
(R_2 \times R_3)\cdot(a \times b)\\
(R_3 \times R_1)\cdot(a \times b) \\
(R_1 \times R_2)\cdot(a \times b)
\end{bmatrix} = \begin{bmatrix}
(R_1)\cdot(a \times b)\\
(R_2)\cdot(a \times b) \\
(R_3)\cdot(a \times b)
\end{bmatrix} = R(a \times b)
$$.