This proof is pretty notation-heavy for which I apologize, but the idea is not complicated: a polynomial $f$ is usually written as a Taylor series centered at $(0,\ldots, 0)$. We use the Binomial Theorem to re-center it at $(\alpha_1, \ldots, \alpha_n)$ and show that the constant term of this series is $f(\alpha_1, \ldots, \alpha_n)$.
Lemma:
Let $R$ be a unital commutative ring and $R[x_1, \ldots, x_n]$ be the $n$-variable polynomial ring over $R$. For $\alpha_1, \ldots, \alpha_n \in R$, let
\begin{align*}
\varphi = \text{eval}_{\alpha_1, \ldots, \alpha_n}: R[x_1, \ldots, x_n] &\to R\\
x_1, \ldots, x_n &\mapsto \alpha_1, \ldots, \alpha_n
\end{align*}
be the evaluation homomorphism. Then $\ker(\varphi) = (x_1-\alpha_1, \ldots, x_n-\alpha_n)$ and the induced map $\overline{\varphi}: R[x_1, \ldots, x_n]/(x_1-\alpha_1, \ldots, x_n-\alpha_n) \to R$ is an isomorphism.
Proof:
Certainly $(x_1-\alpha_1, \ldots, x_n-\alpha_n) \subseteq \ker(\varphi)$ so it remains to show the reverse inclusion. Given $f \in \ker(\varphi)$, we may write $f(x_1, \ldots, x_n) = \sum_{\gamma} a_\gamma {x_1}^{\gamma_1} \cdots {x_n}^{\gamma_n}$ where $a_\gamma = 0$ for all but finitely many multi-indices $\gamma$. Writing $x_i = (x_i - \alpha_i) + \alpha_i$ and expanding by the binomial theorem, we have
\begin{align*}
f(x_1, \ldots, x_n) &= \sum_{\gamma} a_\gamma {x_1}^{\gamma_1} \cdots {x_n}^{\gamma_n} = \sum_{\gamma} a_\gamma ((x_1 -\alpha_1) +\alpha_1)^{\gamma_1} \cdots ((x_n -\alpha_n) +\alpha_n)^{\gamma_n}\\
&= \sum_{\gamma} a_\gamma \left(\sum_{\kappa_1=0}^{\gamma_1} \binom{\gamma_1}{\kappa_1} (x_1 -\alpha_1)^{\kappa_1}\alpha_1^{\gamma_1 - \kappa_1}\right) \cdots \left(\sum_{\kappa_n=0}^{\gamma_n} \binom{\gamma_n}{\kappa_n} (x_n -\alpha_n)^{\kappa_n}\alpha_n^{\gamma_n - \kappa_n}\right)\\
&= \sum_{\gamma} a_\gamma \sum_{\kappa_1=0}^{\gamma_1} \cdots \sum_{\kappa_n=0}^{\gamma_n} \binom{\gamma_1}{\kappa_1} \cdots \binom{\gamma_n}{\kappa_n}\alpha_1^{\gamma_1 - \kappa_1} \cdots\alpha_n^{\gamma_n - \kappa_n} (x_1 -\alpha_1)^{\kappa_1} \cdots (x_n -\alpha_n)^{\kappa_n}\\
&= \sum_{\gamma} a_\gamma \sum_{\kappa} \binom{\gamma_1}{\kappa_1} \cdots \binom{\gamma_n}{\kappa_n}\alpha_1^{\gamma_1 - \kappa_1} \cdots\alpha_n^{\gamma_n - \kappa_n} (x_1 -\alpha_1)^{\kappa_1} \cdots (x_n -\alpha_n)^{\kappa_n}\\
&=\sum_{\kappa} \underbrace{\left(\sum_{\gamma}a_\gamma\binom{\gamma_1}{\kappa_1} \cdots \binom{\gamma_n}{\kappa_n}\alpha_1^{\gamma_1 - \kappa_1} \cdots\alpha_n^{\gamma_n - \kappa_n}\right)}_{b_\kappa} (x_1 -\alpha_1)^{\kappa_1} \cdots (x_n -\alpha_n)^{\kappa_n}\\
&=\sum_{\kappa} b_\kappa (x_1 -\alpha_1)^{\kappa_1} \cdots (x_n -\alpha_n)^{\kappa_n}.
\end{align*}
Note that the constant term $b_{(0,\ldots, 0)}$ is
\begin{align*}
b_{(0,\ldots, 0)} = \sum_{\gamma} a_\gamma\binom{\gamma_1}{0} \cdots \binom{\gamma_n}{0}\alpha_1^{\gamma_1} \cdots\alpha_n^{\gamma_n} = f(\alpha_1, \ldots,\alpha_n) = \varphi(f) = 0
\end{align*}
since $f \in \ker(\varphi)$. Now all other terms in the sum $\sum_{\kappa} b_\kappa (x_1 -\alpha_1)^{\kappa_1} \cdots (x_n -\alpha_n)^{\kappa_n}$ have a factor of $(x_i - \alpha_i)^{\kappa_i}$ for some $i$ with $\kappa_i \geq 1$, hence belong to $(x_1 - \alpha_1, \ldots, x_n - \alpha_n)$. Thus $f(x_1, \ldots, x_n) = \sum_{\kappa} b_\kappa (x_1 -\alpha_1)^{\kappa_1} \cdots (x_n -\alpha_n)^{\kappa_n} \in (x_1 - \alpha_1, \ldots, x_n - \alpha_n)$.