This is not an answer but it is too long for a comment.
What I found interesting is that closed form expressions can be obtained for the partial sums since
$$S^{(j)}_n=\sum^{n}_{k=0}\frac{\binom{n}{k}}{n^k(k+j)}=\frac{\, _2F_1\left(j,-n;j+1;-\frac{1}{n}\right)}{j}$$ and from there, the corresponding limits and asymptotics.
For the case where $j=3$ as in the post $$S^{(3)}_n=\frac{\left(1+\frac{1}{n}\right)^n (n+1) \left(n^2+n+2\right)-2 n^3}{(n+1) (n+2)
(n+3)}=(e-2)+\frac{12-\frac{9}{2}e}{n}+O\left(\frac{1}{n^2}\right)$$ Similarly $$S^{(2)}_n=\frac{n^2+(n+1) \left(1+\frac{1}{n}\right)^n}{(n+1) (n+2)}=1+\frac{e-3}{n}+O\left(\frac{1}{n^2}\right)$$ $$S^{(4)}_n=\frac{6 n^4+\left(n \left(n \left(-2 n^2+n+8\right)+11\right)+6\right)
\left(1+\frac{1}{n}\right)^n}{(n+1) (n+2) (n+3) (n+4)}=(6-2 e)+\frac{22 e-60}{n}+O\left(\frac{1}{n^2}\right)$$ where appear interesting patterns.
Concerning the limit, we can find that
$$\displaystyle \lim_{n\rightarrow \infty} S^{(j)}_n=(-1)^j ((j-1)!-!(j-1)\,e)$$
May be, the asymptotics could be of interest
$$S^{(j)}_n=(-1)^j((j-1)!-!(j-1)\,e) +(-1)^{j+1}\frac{(j+1)!-!(j+1)\,e }{2n}+O\left(\frac{1}{n^2}\right)$$
For $j=3$ and $n=50$, the exact value is $\approx 0.71370532$ while the asymptotics leads to $\approx 0.71363646$.
Update
Following this question of mine, the asymptotics write $$S^{(j)}_n=(-1)^j\left(\left(\alpha_0-\beta_0e\right)-\frac{\left(\alpha_1-\beta_1e\right)}{2n}+\frac{\left(\alpha_2-\beta_2e\right)}{24n^2}\right)+O\left(\frac{1}{n^3}\right)$$ with $$\alpha_0=(j-1)!\qquad \qquad \beta_0=!(j-1)$$ $$\alpha_1=(j+1)!\qquad \qquad \beta_1=!(j+1)$$ $$\alpha_2= 3\times(j+3)! - 8\times(j+2)! \qquad \qquad \beta_2=3\,\times\,!(j+3) - 8\,\times\,!(j+2)$$ Many thanks to achille hui who identified the sequence for $\beta_2$ and provided a nicer expression for $\alpha_2$.
For $j=3$ and $n=50$, the exact value is $\approx 0.71370532$ while the new asymptotics leads to $\approx 0.71370644$.