Prove that $\displaystyle \int_{0}^{\frac{\pi}{2}}\sin^{2n}xdx = \frac{\pi}{2}\frac{1}{4^{n}}\binom{2n}{n}$ and also find value of $\displaystyle \sum^{\infty}_{n=0}\frac{1}{16^n}\binom{2n}{n}.$
$\bf{My\; Try::}$ Let $$\displaystyle I_{n} = \int_{0}^{\frac{\pi}{2}}\sin^{2n}xdx = \int_{0}^{\frac{\pi}{2}}\sin^{2n-2}x\cdot \sin^2 xdx = \int_{0}^{\frac{\pi}{2}}\sin^{2n-2}x\cdot (1-\cos^2 x)dx$$
$$I_{n} =I_{n-1}-\int_{0}^{\frac{\pi}{2}}\cos x\cdot \sin^{2n-2}\cdot \cos xdx$$
Now Using Integration by parts, We get $$I_{n} = I_{n-1}-\frac{I_{n}}{2n-1}\Rightarrow I_{n} = \frac{2n-1}{2n}I_{n-1}$$
Now Using Recursively, We get $$I_{n} = \frac{2n-1}{2n}\cdot \frac{2n-3}{2n-2}I_{n-2} =\frac{2n-1}{2n}\cdot \frac{2n-3}{2n-2}\cdot \frac{2n-5}{2n-4}I_{n-3}$$
So we get $$I_{n} = \frac{2n-1}{2n}\cdot \frac{2n-3}{2n-2}\cdot \frac{2n-5}{2n-4}\cdot \frac{2n-7}{2n-6}\cdot \cdot \cdot \cdot \cdot \cdot \cdot\cdot \frac{3}{2}I_{0}$$
and we get $\displaystyle I_{0} = \frac{\pi}{2}$
So we get $$I_{n} = \frac{(2n)!}{4^n\cdot n!\cdot n!}\cdot \frac{\pi}{2}$$
Now I did not understand How can I calculate value of $\displaystyle \sum^{\infty}_{n=0}\frac{1}{16^n}\binom{2n}{n}.$
Help Required, Thanks.