We aren't allowed to use many tricks such as difference quotient / integral calculus...
Prove that $\exp$ is continuous at $x_{0}=0$
...............................................................................................................................
Given:
$$\exp: \mathbb{R} \ni x \mapsto \sum_{k=0}^{\infty } \frac{1}{k!} x^{k} \in \mathbb{R}$$
also $e = \exp(1)$. For all $x \in \mathbb{R}$ with $\left | x \right | \leq 1$: $$\left | \exp(x) - 1 \right | \leq \left | x \right | \cdot (e-1)$$
and $\exp(0) = 1$
...............................................................................................................................
If I remember correctly, we said that if $|f(x) - f(x_0)| < \varepsilon$ is true then it's continuous.
So I think it would be good to start with: $$e^x = \lim_{n \to \infty}\left(1 + \frac{x}{n}\right)^n$$ then show this is convergent: $$\lim_{x \to x_0} \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = \lim_{x \to x_0} e^x = e^{x_0} = \lim_{n \to \infty} \left(1 + \frac{x_0}{n}\right)^n = \lim_{n \to \infty} \lim_{x \to x_0} \left(1 + \frac{x}{n}\right)^n$$
and in the end put it somehow in $|f(x) - f(x_0)| < \varepsilon$ to show $\exp$ continuous? I don't know exactly how to do that but the way is correct so far?