Let's prove this by induction. Suppose $A$ is an $n\times n$ upper-triangular, normal matrix.
If $n=1$, this is trivial.
If $n=2$, we have
$$ A = \begin{pmatrix}
a & b\\
0 & c
\end{pmatrix}$$
So
\begin{align*}
0 = AA^* - A^*A &= \begin{pmatrix}
a & b\\
0 & c
\end{pmatrix}\begin{pmatrix}
\overline{a} & 0\\
\overline{b} & \overline{c}
\end{pmatrix}- \begin{pmatrix}
\overline{a} & 0\\
\overline{b} & \overline{c}
\end{pmatrix}\begin{pmatrix}
a & b\\
0 & c
\end{pmatrix} \newline
&= \begin{pmatrix}
|a|^2 + |b|^2 & b\overline{c}\\
\overline{b}c & |c|^2
\end{pmatrix} - \begin{pmatrix}
|a|^2 & \overline{a}b \\
a\overline{b} & |b|^2+|c|^2
\end{pmatrix} \newline
&= \begin{pmatrix}
|b|^2 & b\overline{c}-\overline{a}b\\
\overline{b}c -a\overline{b} & |b|^2
\end{pmatrix}_.
\end{align*}
Therefore $|b|^2 = 0$. Thus $b = 0$ and $A$ is diagonal.
Now assume the result holds for $n-1$.
Then $$A = \begin{pmatrix}
a & B\\
0 & C
\end{pmatrix}$$
where $B$ is an $1\times (n-1)$ matrix and $C$ is an $(n-1)\times(n-1)$ upper-triangular matrix.
Since $A$ is normal,
\begin{align*}
0 = A^*A-AA^* &= \begin{pmatrix}
\overline{a} & 0\\
B^* & C^*
\end{pmatrix}\begin{pmatrix}
a & B\\
0 & C
\end{pmatrix} - \begin{pmatrix}
a & B\\
0 & C
\end{pmatrix}\begin{pmatrix}
\overline{a} & 0\\
B^* & C^*
\end{pmatrix} \newline
&= \begin{pmatrix}
|a|^2 & \overline{a}B\\
aB^* & B^*B + C^*C
\end{pmatrix} - \begin{pmatrix}
|a|^2 + BB^* & BC^*\\
CB^* & CC^*
\end{pmatrix} \newline
&= \begin{pmatrix}
-|B|^2 & \overline{a}B-BC^*\\
aB^*-CB^* & B^*B + C^*C-CC^*
\end{pmatrix}_.
\end{align*}
Thus $|B| = 0$ and so $B=0$. Hence $C^*C-CC^* = 0$, i.e. $C$ is normal. By the hypothesis of induction, $C$ is diagonal. Finally,
$$ A = \begin{pmatrix}
a & 0\\
0 & C
\end{pmatrix}_.$$
So $A$ is diagonal.