$$\sum _{i=0}^{n-1}\left(\sum _{j=i+1}^{n-1}\left(\sum _{k=j+1}^{n-1}\:\left(1\right)\right)\:\right)$$
If you want to do it the hard way, just follow the order of operations and compute the inner sums first:
$\sum_{k=j+1}^{n-1} 1=(n-1)-(j+1)+1=n-j-1$ because you are adding 1 that many times.
$\sum_{j=i+1}^{n-1} (n-j-1)=\sum_{j=i+1}^{n-1}n-\sum_{j=i+1}^{n-1} j-\sum_{j=i+1}^{n-1}1=n\cdot(n-i-1)-\left(\dfrac{1}{2}(n-i-1)(n+i)\right)-(n-i-1)=\dfrac{1}{2}(n-i-1)(n-i-2)$
You should be able to find through the same approach that
$\sum_{i=0}^{n-1} \dfrac{1}{2}(n-i-1)(n-i-2)=\dfrac{n^3}{6}-\dfrac{n^2}{2}+\dfrac{n}{3}$