Find:
$$\lim_{n \rightarrow \infty} \frac{1}{n} \int_{1}^{\infty} \frac{\mathrm dx}{x^2 \log{(1+ \frac{x}{n})}}$$
The sequence $\frac{1}{nx^2 \log{(1+ \frac{x}{n})}}=\frac{1}{x^3 \frac{\log{(1+ \frac{x}{n})}}{\frac{x}{n}}}$ converges pointwise to $\frac{1}{x^3}$. So if we could apply Lebesgue's Dominated Convergence Theorem, we have:
$\lim_{n \rightarrow \infty} \frac{1}{n} \int_{1}^{\infty} \frac{\mathrm dx}{x^2 \log{(1+ \frac{x}{n})}}=\lim_{n \rightarrow \infty} \int_{1}^{\infty} \frac{\mathrm dx}{x^3}=\frac{1}{2}$
I have a problem with finding a majorant. Could someone give me a hint?