2

There's a definition of triangle center function already in existence, but I don't really understand it. Anyway, here's my attempt at defining this concept using ideas I'm more comfortable with.

Let $E$ denote a Euclidean space; wlog we can assume $E=\mathbb{R}^n$.

By a triangle center function on $E$, let us mean a mapping $$c : E \leftarrow E \times E \times E$$ satisfying the following axioms.

Interiality. $c(x,y,z) \in \mathrm{convexHull}\{x,y,z\}$

Commutativity. $c(x,y,z) = c(y,x,z) = \cdots$

Similarity. For all bijective similarity transforms $f : E \leftarrow E$, we have $$f(c(x,y,z)) = c(fx,fy,fz).$$

What I'd like to know is:

Question. Can anyone tell whether or not these definitions are somehow equivalent, and if so, in what sense?

goblin GONE
  • 67,744

2 Answers2

2

Your first condition is not satisfied by some triangle centers: for example, the circumcenter of a triangle can lie outside it.

Wikipedia's definition might be a bit more understandable.

Qiaochu Yuan
  • 419,620
  • Good thinking! However this should really be a comment. Perhaps the definitions would be equivalent if we got rid of the interiality condition. – goblin GONE Dec 26 '15 at 05:09
  • 1
    @goblin This seems appropriate as an answer - your question is "Can anyone tell whether or not these definitions are somehow equivalent?", and this shows that the answer is no. – Noah Schweber Dec 26 '15 at 05:09
  • @NoahSchweber, well, it answer my literal question. but the answer given is implicitly of the form: "I think the question would be better if you changed ... a little." Therefore, I think it would be more constructive to post this as a comment, so that other, more comprehensive answers can build on it. We should strive to make our answers as interesting and useful as possible, and not always take the literal question 100% literally. – goblin GONE Dec 26 '15 at 05:14
  • @NoahSchweber, case in point: look at my last five or six answers. I don't claim to always write good answers or anything like that, but notice that, rather than rushing to answer the literal question asked, I usually do my best to give the most useful answer that I can. – goblin GONE Dec 26 '15 at 05:19
  • 1
    @goblin: look, if you don't like this answer, then don't upvote it. I answered the question you asked. If you meant to ask something else then say so. – Qiaochu Yuan Dec 26 '15 at 05:21
  • Qiaochu, as always I really appreciate your input. But it isn't quite that simple. My hands are now tied, you see: if I edit the question to change the definition, then I make your answer obsolete, which I consider to be in poor form. If I don't, then I have to run off and repost a nearly identical question. I think it would be more constructive to discuss these kinds of things in the comments. Added. Let me just emphasize that I don't wish to appear hostile, and I don't want to pick a fight or anything like that. I just think we could all use this website's features a little better. – goblin GONE Dec 26 '15 at 05:25
  • Look, don't worry about it. If I can gather my thoughts on this, I'll make a meta posting about it. But for now, lets just forget it. – goblin GONE Dec 26 '15 at 05:31
2

Types of Triangle Center Functions

A triangle center function, as defined on MathWorld, is a function $f_{1}:\mathbb{R}^{+}\times\mathbb{R}^{+}\times\mathbb{R}^{+}\to\mathbb{R}$. It must satisfy bisymmetry in the second and third arguments: $f_{1}\left(a,c,b\right)=f_{1}\left(a,b,c\right)$ and homogeneity: there is a number $m$ such that $f_{1}\left(ta,tb,tc\right)=t^{m}f_{1}\left(a,b,c\right)$. The intent is for $a,b,c$ to represent the side lengths of a triangle. By the law of cosines, we can permit a formula for $f_{1}$ to contain some trigonometric expressions such as $\cos A$, since $\cos A=\dfrac{-a^{2}+b^{2}+c^{2}}{2bc}$ is homogeneous of degree $0$ and bisymmetric in $b$ and $c$.

MathWorld also mentions a third property, "cyclicity", but that is not actually a property of $f_{1}$. Rather, given an $f_{1}$, there is a related function, which MathWorld also seems to call a "triangle center function", which outputs a triple of numbers (separated here by colons to emphasize their homogeneity): $\mathbf{f}_{2}\left(a,b,c\right)=f_{1}\left(a,b,c\right):f_{1}\left(b,c,a\right):f_{1}\left(c,a,b\right)$. Given a triangle with side lengths $a,b,c$, the triple $\mathbf{f}_{2}$ is intended to give the trilinear coordinates of a special point.

To avoid homogeneous coordinates (such as trilinear or barycentric), and to make a definition easier to understand, we can define the following related function on points in a Euclidean space: $\mathbf{f}_{3}:E\times E\times E\to E$ by $\mathbf{f}_{3}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)=$ "the point in the plane containing $\mathbf{A},\mathbf{B},\mathbf{C}$ whose trilinear coordinates with respect to $\triangle\mathbf{ABC}$ are given by $\mathbf{f}_{2}\left(\left\|\mathbf{C}-\mathbf{B}\right\|,\left\|\mathbf{A}-\mathbf{C}\right\|,\left\|\mathbf{B}-\mathbf{A}\right\|\right)$". Since this comes from $f_1$ in the standard way, I will call it "the Euclidean triangle center function associated to $f_1$ (in $E$)".

In the question, goblin defines another sort of function. As Qiaochu Yuan noted in their answer, "Interiality" (using the convex hull) is not a great axiom because of centers like the circumcenter. However, being charitable, we can make the minor change from "convex hull" to "affine hull" (a.k.a. "affine span") and consider the same question. $\mathbf{f}:E\times E\times E\to E$ is said to be a goblin center function if it's "commutative" (the function is invariant under all permutations of its arguments), "planar" ($\mathbf{f}$ always lies in the affine span of its arguments), and "similar" ($\sigma\left(\mathbf{f}(\mathbf{A},\mathbf{B},\mathbf{C})\right)=\mathbf{f}\left(\sigma(\mathbf A),\sigma(\mathbf B),\sigma(\mathbf C)\right)$ for all similarity transformations $\sigma$).


Theorem

Every Euclidean triangle center function is a goblin center function and vice versa.


Proof of first direction

For convenience, define the following implicit functions of $\mathbf{A},\mathbf{B},\mathbf{C}$: $a=\left\Vert \mathbf{C}-\mathbf{B}\right\Vert$, $b=\left\Vert \mathbf{A}-\mathbf{C}\right\Vert$, $c=\left\Vert \mathbf{B}-\mathbf{A}\right\Vert$. We can use facts about trilinear coordinates to write out $\mathbf{f}_{3}$ explicitly in terms of $f_{1}$. After choosing an origin (imagining $E$ as $\mathbb{R}^n$), we have: $$\mathbf{f}_{3}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)=\dfrac{af_{1}\left(a,b,c\right)}{\lambda}\mathbf{A}+\dfrac{bf_{1}\left(b,c,a\right)}{\lambda}\mathbf{B}+\dfrac{cf_{1}\left(c,a,b\right)}{\lambda}\mathbf{C}$$ where $\lambda=af_{1}\left(a,b,c\right)+bf_{1}\left(b,c,a\right)+cf_{1}\left(c,a,b\right)$ (assuming $\lambda\ne0$).

By definition, $\mathbf{f}_3$ is "planar". Next, we prove "commutativity".

Note that $a\left(\mathbf{A},\mathbf{C},\mathbf{B}\right)=a\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)$, $b\left(\mathbf{A},\mathbf{C},\mathbf{B}\right)=c\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)$, and $c\left(\mathbf{A},\mathbf{C},\mathbf{B}\right)=b\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)$. Using $a,b,c$ to denote their values with arguments $\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)$, we have $\lambda\left(\mathbf{A},\mathbf{C},\mathbf{B}\right)=af_{1}\left(a,c,b\right)+cf_{1}\left(c,b,a\right)+bf_{1}\left(b,a,c\right)$, which equals $\lambda\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)$ after applying the bisymmetry of $f_{1}$. Similarly, $$\mathbf{f}_{3}\left(\mathbf{A},\mathbf{C},\mathbf{B}\right)=\dfrac{af_{1}\left(a,c,b\right)}{\lambda}\mathbf{A}+\dfrac{cf_{1}\left(c,b,a\right)}{\lambda}\mathbf{C}+\dfrac{bf_{1}\left(b,a,c\right)}{\lambda}\mathbf{B}=\mathbf{f}_{3}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right).$$

In order to show that $\mathbf{f}_3$ is "commutative", it remains to show that $\mathbf{f}_{3}$ remains unchanged upon a cyclic permutation of $\mathbf{A},\mathbf{B},\mathbf{C}$ (since a transposition and a cyclic permutation generate $S_{3}$). Note that $a\left(\mathbf{B},\mathbf{C},\mathbf{A}\right)=b\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)$, $b\left(\mathbf{B},\mathbf{C},\mathbf{A}\right)=c\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)$, and $c\left(\mathbf{B},\mathbf{C},\mathbf{A}\right)=a\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)$. Thus, $$\lambda\left(\mathbf{B},\mathbf{C},\mathbf{A}\right)=bf_{1}\left(b,c,a\right)+cf_{1}\left(c,a,b\right)+af_{1}\left(a,b,c\right)=\lambda\left(\mathbf{A},\mathbf{B},\mathbf{C}\right).$$ Hence, $$\mathbf{f}_{3}\left(\mathbf{B},\mathbf{C},\mathbf{A}\right)=\dfrac{bf_{1}\left(b,c,a\right)}{\lambda}\mathbf{B}+\dfrac{cf_{1}\left(c,a,b\right)}{\lambda}\mathbf{C}+\dfrac{af_{1}\left(a,b,c\right)}{\lambda}\mathbf{A}=\mathbf{f}_{3}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right).$$

Finally, we show "similarity": let $\sigma$ be a similarity which multiplies all distances by $r$. Then $\lambda\left(\sigma\mathbf{A},\sigma\mathbf{B},\sigma\mathbf{C}\right)=raf_{1}\left(ra,rb,rc\right)+rbf_{1}\left(rb,rc,ra\right)+rcf_{1}\left(rc,ra,rb\right)=r^{m+1}\lambda\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)$ by homogeneity of $f_{1}$. Hence, $$\mathbf{f}_{3}\left(\sigma\mathbf{A},\sigma\mathbf{B},\sigma\mathbf{C}\right)$$ $$=\dfrac{raf_{1}\left(ra,rb,rc\right)}{r^{m+1}\lambda}\sigma\mathbf{A}+\dfrac{rbf_{1}\left(rb,rc,ra\right)}{r^{m+1}\lambda}\sigma\mathbf{B}+\dfrac{rcf_{1}\left(rc,ra,rb\right)}{r^{m+1}\lambda}\sigma\mathbf{C}$$ $$=\dfrac{af_{1}\left(a,b,c\right)}{\lambda}\sigma\mathbf{A}+\dfrac{bf_{1}\left(b,c,a\right)}{\lambda}\sigma\mathbf{B}+\dfrac{cf_{1}\left(c,a,b\right)}{\lambda}\sigma\mathbf{C}.$$ Since the coefficients of $\sigma\mathbf{A}$,$\sigma\mathbf{B}$,$\sigma\mathbf{C}$ sum to 1 (by definition of $\lambda$), we have an affine combination, which commutes with affine transformations. Since similarity transformations on $\mathbb{R}^{n}$ are special cases of affine transformations, we have $\mathbf{f}_{3}\left(\sigma\mathbf{A},\sigma\mathbf{B},\sigma\mathbf{C}\right)=\sigma\mathbf{f}_{3}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)$. Note that this does not necessarily hold when $\sigma$ is affine but not a similarity (such as a shear), as we wouldn't have been able to apply the homogeneity of $f_{1}$ in that case.


Proof of second direction

Let $\mathbf{f}$ be a goblin center function. Since $\mathbf{f}$ is affine and every point in the plane is in the affine span of $\mathbf{A},\mathbf{B},\mathbf{C}$ when they are in general position, there are real-valued functions $f_{A},f_{B},f_{C}$ always summing to $1$ such that $\mathbf{f}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)=f_{A}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)\mathbf{A}+f_{B}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)\mathbf{B}+f_{C}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)\mathbf{C}$. Since $\mathbf{f}$ is "commutative", we have $\mathbf{f}\left(\mathbf{A},\mathbf{C},\mathbf{B}\right)=\mathbf{f}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)$, so that $$f_{A}\left(\mathbf{A},\mathbf{C},\mathbf{B}\right)\mathbf{A}+f_{B}\left(\mathbf{A},\mathbf{C},\mathbf{B}\right)\mathbf{C}+f_{C}\left(\mathbf{A},\mathbf{C},\mathbf{B}\right)\mathbf{B}$$ $$=f_{A}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)\mathbf{A}+f_{B}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)\mathbf{B}+f_{C}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)\mathbf{C}$$.

Since the coefficients on both sides sum to 1, we must have corresponding coefficients equal, so that $f_{A}\left(\mathbf{A},\mathbf{C},\mathbf{B}\right)=f_{A}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)$ ($f_{A}$ is bisymmetric in the second and third arguments), $f_{B}\left(\mathbf{A},\mathbf{C},\mathbf{B}\right)=f_{C}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)$ ($f_{B}$ becomes $f_{C}$ when the second and third arguments are swapped). By transposing other pairs, we find several other analogous relations. In conclusion, $f_{A}$ is bisymmetric, and $f_{B}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)=f_{A}\left(\mathbf{B},\mathbf{A},\mathbf{C}\right)$, $f_{C}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)=f_{A}\left(\mathbf{C},\mathbf{B},\mathbf{A}\right)$. Thus, we may write $\mathbf{f}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)=f_{A}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)\mathbf{A}+f_{A}\left(\mathbf{B},\mathbf{A},\mathbf{C}\right)\mathbf{B}+f_{A}\left(\mathbf{C},\mathbf{B},\mathbf{A}\right)\mathbf{C}$. Since $f_{A}$ is bisymmetric, we may also rewrite this in the more elegant form $\mathbf{f}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)=f_{A}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)\mathbf{A}+f_{A}\left(\mathbf{B},\mathbf{C},\mathbf{A}\right)\mathbf{B}+f_{A}\left(\mathbf{C},\mathbf{A},\mathbf{B}\right)\mathbf{C}$.

Let $\sigma$ be a similarity transformation. We should have $\sigma\mathbf{f}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)=\mathbf{f}\left(\sigma\mathbf{A},\sigma\mathbf{B},\sigma\mathbf{C}\right)$. Since $\mathbf{f}$, when written in terms of $f_{A}$, is an affine combination, we have $\sigma\mathbf{f}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)=f_{A}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)\sigma\mathbf{A}+f_{A}\left(\mathbf{B},\mathbf{C},\mathbf{A}\right)\sigma\mathbf{B}+f_{A}\left(\mathbf{C},\mathbf{A},\mathbf{B}\right)\sigma\mathbf{C}$. Setting this equal to $\mathbf{f}\left(\sigma\mathbf{A},\sigma\mathbf{B},\sigma\mathbf{C}\right)$ and equating coefficients, we have $f_{A}\left(\sigma\mathbf{A},\sigma\mathbf{B},\sigma\mathbf{C}\right)=f_{A}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)$ for all similarity transformations $\sigma$.

Intuitively, similarity transformations should be able to send a triangle to any similar triangle, so that $f_{A}$ may only depend on the length ratios $\dfrac{b}{a}=\dfrac{\left\Vert \mathbf{A}-\mathbf{C}\right\Vert }{\left\Vert \mathbf{B}-\mathbf{C}\right\Vert }$,$\dfrac{c}{a}$,$\dfrac{b}{c}=\dfrac{\frac{b}{a}}{\frac{c}{a}}$. But a function of $\dfrac{b}{a},\dfrac{c}{a}$ is equal to a homogeneous function of degree zero of $a,b,c$: we may write $f_{A}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)=\widetilde{f}\left(a,b,c\right)$ where $\widetilde{f}$ is homogeneous of degree zero.

[A bit more rigorously than the above: Once an origin is fixed, a similarity transformation has the form $\sigma\left(\mathbf{x}\right)=rM\mathbf{x}+\mathbf{t}$ where $M$ is orthogonal. After a translation, we may assume $\mathbf{A}$ is at the origin. After a potential reflection, we can assume that $\mathbf{B}-\mathbf{A}$, $\mathbf{C}-\mathbf{A}$ are a positively oriented basis for the plane they span. A rotation lets us choose the angle for $\mathbf{B}$, and then knowing the lengths tells us the angle for $\mathbf{C}$ by the law of cosines and the known orientation. Thus, $f_{A}$ can depend only on the lengths. However, dilations mean it can only depend on ratios of lengths (or immediately that it's a homogeneous-of-degree-zero function of the lengths).]

Note that $\widetilde{f}$ is bisymmetric since $f_{A}$ is. Finally, define $f\left(a,b,c\right)=\dfrac{1}{a}\widetilde{f}\left(a,b,c\right)$, which is still bisymmetric, and is homogeneous of degree $-1$ (and hence is a "triangle center function" in the sense of $f_{1}$). We have $$\mathbf{f}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)=f_{A}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)\mathbf{A}+f_{B}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)\mathbf{B}+f_{C}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)\mathbf{C}$$ $$=f_{A}\left(\mathbf{A},\mathbf{B},\mathbf{C}\right)\mathbf{A}+f_{A}\left(\mathbf{B},\mathbf{C},\mathbf{A}\right)\mathbf{B}+f_{A}\left(\mathbf{C},\mathbf{A},\mathbf{B}\right)\mathbf{C}$$ $$=af\left(a,b,c\right)\mathbf{A}+bf\left(b,c,a\right)\mathbf{B}+cf\left(c,a,b\right)\mathbf{C}$$

Since the coefficients of $\mathbf{A},\mathbf{B},\mathbf{C}$ sum to $1$ (by definition of $f_{A},f_{B},f_{C}$), we have $\lambda=af\left(a,b,c\right)+bf\left(b,c,a\right)+cf\left(c,a,b\right)\equiv1$, and so this says exactly that $\mathbf{f}$ is the Euclidean triangle center function associated to $f$.

Mark S.
  • 23,925
  • Woah! It looks like a lot of hard work went into this answer. Reading it now... – goblin GONE Jan 03 '16 at 03:27
  • @goblin, let me know if anything seems unclear, or if this wasn't the sort of thing you had in mind. Even if the details of the proof aren't terribly interesting, I'm pleasantly surprised at how tidily your characterization worked out (modulo "convex"->"affine"). – Mark S. Jan 03 '16 at 14:43