A slightly different proof for the case $\sum_{n=1}^\infty |a_n|< \infty $ (i.e., $\sum_{n=1}^\infty a_n$ is absolutely convergent):
First, we show that $\lim_{N \to \infty} |\sum_{n=1}^N a_n| = | \sum_{n=1}^\infty a_n|$.
Denote the $N$th partial sum by $s_N := \sum_{n=1}^N a_n$.
The absolute convergence of $\sum_{n=1}^\infty a_n$ implies ordinary convergence, so there exists $L \in \mathbb{R}$, s.t. $L = \sum_{n=1}^\infty a_n := \lim_{N\to \infty} s_N $. Then by this exercise, the absolute value of $s_N$ also converges to the absolute value of $L$, i.e., $\lim_{N\to \infty} |s_N| = |L| = | \sum_{n=1}^\infty a_n|$ .
Finally, $\forall N, |s_N| = |\sum_{n=1}^N a_n|\leq \sum_{n=1}^N |a_n| $ (by finite triangle inequality). Taking $\lim_{N\to \infty}$ on both sides gives the desired result.