Prove: $${n\choose 0}-\frac{1}{3}{n\choose 1}+\frac{1}{5}{n\choose 2}-...+(-1)^n\frac{1}{2n+1}{n\choose n}=\frac{n!2^n}{(2n+1)!!}.$$
Here, $(2n+1)!!$ is an "odd factorial": $(2n+1)!! = 1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n+1$).
How to prove this equation?
Is it possible to use induction?
$${n\choose 0}-\frac{1}{3}{n\choose 1}+\frac{1}{5}{n\choose 2}-...(-1)^n\frac{1}{2n+1}{n\choose n}=\sum\limits_{k=0}^{n}{n\choose k}(-1)^k\frac{1}{2k+1};$$
$$(2n+1)!!=\frac{(2n)!(2n+1)}{2^nn!}\Rightarrow \frac{n!2^n}{(2n+1)!!}=\frac{2^{2n}(n!)^2}{(2n)!(2n+1)};$$
$$\sum\limits_{k=0}^{n}{n\choose k}(-1)^k\frac{1}{2k+1}=\frac{2^{2n}(n!)^2}{(2n)!(2n+1)}$$
What now?