There is a conjecture: "The only subspace of a normed vector space $V$ that has a non-empty interior, is $V$ itself." (here, the topology is the obvious set of all open sets generated by the metric $||\cdot||$).
I have a proof for the case $V$ is finite dimensional. Because, let $V$ have dimension $n$ and a subspace $S$ of $V$ have dimension $m < n$. Let $\{v_1,v_2,\ldots,v_m\}$ be a basis for $S$, extended to the basis $\{v_1,\ldots,v_m,\ldots,v_n\}$ of $V$. Now, suppose that $p = b_1v_1+\cdots+b_mv_m$ is an interior point of $S$. Now, consider the norm $N(a_1v_1 +\cdots+a_nv_n)=\max(|a_1|,\ldots,|a_n|)$. Then, there is an $r>0$, such that $||x-p||<r$ and $x$ is in $V$ $\implies$ $x$ is in $S$, since on a finite dim. space, all norms are equivalent. Let $m<k\leq n$,and chose $v$ in $V$ as:
$$v=\left(b_1+\frac{r}{2}\right)v_1+\left(b_2+\frac{r}{2}\right)v_2+\cdots+\left(b_m+\frac{r}{m}\right)v_m+\frac{r}{2}v_k$$ Then, $N(v-p)\leq\frac{r}{2}<r$, so $v$ is in $S$ and by the subspace property of $S$, $v_k$ is in $S$ too, a contradiction to $m<n$.
I have primarily 2 questions:
(1) Is there a simpler method to proof the conjecture for the finite dimensional case?
(2) Is the conjecture true for the infinite dimensional case?
Sorry, if the question admits a very trivial answer. The motivation behind my question , is the fact that an open interval in $\mathbb{R}$ is not open in $\mathbb{R}\times\mathbb{R}$, etc.