Show that $$ L=\lim_{s\rightarrow\infty}\left(\int_0^s\frac{ds'}{\sqrt{s'}}-\sum_{s'=1}^s\frac{1}{\sqrt{s'}}\right) = 1.460\ldots $$
My attempts: To begin, rewriting the limit of the form $$ L=\lim_{\epsilon\rightarrow0}\left(\int_0^{\infty}\frac{e^{-\epsilon s'}}{\sqrt{s'}}ds'-\sum_{s'=1}^{\infty}\frac{e^{-\epsilon s'}}{\sqrt{s'}}\right) $$ where $$ \int_0^{\infty}\frac{e^{-\epsilon s'}}{\sqrt{s'}}ds' = \int_0^{\infty}\frac{e^{-\epsilon s^2}}{s}d(s^2) = \sqrt{\frac{\pi}{\epsilon}} $$ and $$ \sum_{s'=1}^{\infty}\frac{e^{-\epsilon s'}}{\sqrt{s'}} = \sum_{s'=1}^{\infty}{e^{-\epsilon s'}}\int_0^{\infty}e^{-\sqrt{s'}t}dt = \int_0^{\infty}\left(\sum_{s'=1}^{\infty}{e^{-\epsilon s'-\sqrt{s'}t}}\right)dt $$ Second, the identity $$ \sum_{s=1}^{\infty}\frac{(1-\epsilon)^s}{\sqrt{s}}=\sqrt{\frac{\pi}{\epsilon}}(1+O(\epsilon)); $$ may be of some help.
Thirdly, the limit is somehow $-\zeta(1/2)=1.46035\cdots$ where $\zeta(s)$ is the Riemann zeta function.