It's also possible to obtain a complete asymptotic expansion for this integral (and hence obtain the asymptotic expansion for $\log\Gamma(z+1)$).
The quantity $t-\lfloor t \rfloor - 1/2$ is a sawtooth wave and has the known Fourier series
$$
t - \lfloor t \rfloor - \frac{1}{2} = - \frac{1}{\pi}\sum_{k=1}^{\infty} \frac{\sin(2\pi k t)}{k}.
$$
We can substitute this series into the integral and exchange the order of integration and summation; indeed, if we set $f(t) = t-\lfloor t \rfloor - 1/2$ and
$$
f_n(t) = - \frac{1}{\pi}\sum_{k=1}^{n} \frac{\sin(2\pi k t)}{k}
$$
then, using integration by parts,
$$
\begin{align}
\left|\int_0^\infty [f(t) - f_n(t)] (z+t)^{-1}\,dt \right| &= \left| \int_0^\infty (z+t)^{-2} \int_0^t [f(s)-f_n(s)]\,ds\,dt \right| \\
&= \left| \int_0^\infty (z+t)^{-2} \int_0^{\{t\}} [f(s)-f_n(s)]\,ds\,dt \right| \\
&\leq \int_0^\infty (z+t)^{-2} \int_0^1 |f(s)-f_n(s)|\,ds\,dt \\
&= z^{-1} \|f-f_n\|_{L^1([0,1])} \\
&\to 0
\end{align}
$$
as $n \to \infty$, where $\{t\} = t - \lfloor t \rfloor$. Thus
$$
\begin{align}
\int_0^\infty \frac{t - \lfloor t \rfloor - 1/2}{z + t} \,dt &= -\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{1}{k} \int_0^\infty \frac{\sin(2\pi k t)}{z+t}\,dt \\
&= -\frac{1}{\pi} \sum_{k=1}^{\infty} \frac{1}{k} \int_0^\infty \left(1+t^2\right)^{-1} e^{-2\pi k z t}\,dt, \tag{1}
\end{align}
$$
where the second equality follows from [1] (see also [2, pp. 187-188]). For each $k$ we have
$$
\int_0^\infty \left(1+t^2\right)^{-1} e^{-2\pi k z t}\,dt \sim \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{(2\pi k z)^{2n+1}}
$$
by Watson's lemma. This asymptotic series can be interchanged with the convergent series in $(1)$ and remain asymptotic, thus
$$
\begin{align}
\int_0^\infty \frac{t - \lfloor t \rfloor - 1/2}{z + t} \,dt &\sim -\frac{1}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{(2\pi z)^{2n+1}} \sum_{k=1}^{\infty} \frac{1}{k^{2n+2}} \\
&= - \frac{1}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^n (2n)! \zeta(2n+2)}{(2\pi z)^{2n+1}} \\
&= -\sum_{n=0}^{\infty} \frac{B_{2n+2}}{(2n+1)(2n+2) z^{2n+1}} \\
&= - \frac{1}{12 z} + \frac{1}{360 z^3} - \frac{1}{1260 z^5} + \frac{1}{1680 z^7} - \cdots.
\end{align}
$$
This agrees with the known asymptotic for $\Gamma(z+1)$ in light of the result in Oliver's answer.
[1] DLMF Eqn. 6.7.13
[2] N. Temme, Special Functions: An Introduction to the Classical Functions of Mathematical Physics, Wiley, 1996.