[See here and here for an introduction to the proof. They are explicitly worked special cases].
As you surmise, induction works, employing our prior Lemma (case $\rm\,n = 2\,\!).\,$ Put $\rm\,K = \mathbb Q\,$ in
Theorem $\rm\ \sqrt{c_1}+\cdots+\!\sqrt{c_{n}} = k\in K\ \Rightarrow \sqrt{c_i}\in K\,$ for all $\,\!\rm i,\,$ if $\rm\, 0 < c_i\in K\:\!$ an ordered field.
Proof $\, $ By induction on $\:\!\rm n.\,$ Clear if $\rm\,n=1.\,$ It is true for $\rm\,n=2\,$ by said Lemma. Suppose $\rm\, n>2.$ Below we prove $\rm\color{#0af}{one}$ of the square-roots is in $\rm K\:\!$. Hence the sum of all of the others is also in $\rm K,\,$ thus, by induction, all of the others are also in $\rm K,\,$ finishing the proof.
Note that $\rm\,\sqrt{c_1}+\cdots+\sqrt{c_{n-1}}\, =\, k\! -\! \sqrt{c_n}\in K(\sqrt{c_n})\,$ so all $\,\rm\sqrt{c_j}\in K(\sqrt{c_n})\,$ by induction.
Therefore $\rm\, \sqrt{c_j} =\, a_j + b_j\sqrt{c_n}\,$ for some $\rm\,a_j,\,\!b_j\in K,\,$ for $\rm\,j=1,\ldots,n\!-\!1$.
$\rm \color{#0a0}{Some\,\ {b_j < 0}}\,$ $\Rightarrow$ $\rm\ a_j = \sqrt{c_j}-b_j\sqrt{c_n} = \sqrt{c_j}+\!\sqrt{b_j^2 c_n}\in K\,\Rightarrow \color{#0af}{\sqrt{c_j}}\in K\,$ by Lemma $\rm(n\!=\!2).$
Else $\,\rm \color{#90f}{all\ b_j \ge 0},\,$ so $\rm\, b := b_1\!+\cdots+b_{n-1} \ge 0.\,$ Let $\rm\, a := a_1\!+\cdots+a_{n-1}\ $ so
$$\rm \sqrt{c_1}+\cdots+\!\sqrt{c_{n}}\, =\, a+(b\!+\!1)\,\sqrt{c_n} = k\in K\,\Rightarrow\,\!\color{#0af}{\sqrt{c_n}}= {\small \frac{\!k\!-\!a}{\color{#c00}{b\!+\!1}}}\in K\quad $$
So in $\rm\color{#0a0}{every}\ \color{#90f}{case}\ \color{#0af}{one}$ of the square-roots lies in $\rm K\,$ (notice that $\rm\,b\ge0\,\Rightarrow \color{#c00}{b\!+\!1}\ne 0).\,$ $\ \bf\small QED$
Remark $ $ The positivity of the summands is crucial (else e.g. $\,-\sqrt{2} + \sqrt{2}\in \mathbb Q\,$ but $\rm\,\sqrt{2}\not\in\mathbb Q).\,$ More generally see this post on the linear independence of square-roots (Besicovic's theorem).