Using some results from my other answer, we can compute the second sum requested.
Similar to my other answer, write
$$
\sum_{k=1}^\infty\frac{\Gamma(\frac k2+1)}{k^3\Gamma(\frac k2+\frac32)}
=\sum_{k=1}^\infty\frac{\Gamma(k+\frac12)}{(2k-1)^3\Gamma(k+1)}
+\sum_{k=1}^\infty\frac{\Gamma(k+1)}{8k^3\Gamma(k+\frac32)}\tag{1}
$$
First Sum on the Right of $\boldsymbol{(1)}$
Using $(2)$ from my other answer, we get
$$
\sum_{k=1}^\infty\frac{\Gamma(k+\frac12)}{(2k-1)^3\Gamma(k+1)}
=\sqrt\pi\sum_{k=1}^\infty\frac{\binom{2k}{k}}{4^k(2k-1)^3}\tag{2}
$$
Starting from $(6)$ in my other answer, we get
$$
\begin{align}
\sum_{k=1}^\infty\frac{\binom{2k}{k}}{4^k(2k-1)^3}
&=\int_0^1\left(\frac{\sin^{-1}(x)}x-\frac1{1+\sqrt{1-x^2}}\right)\,\mathrm{d}x\\
&=\int_0^{\pi/2}\left(u\cot(u)-\frac{\cos(u)}{1+\cos(u)}\right)\,\mathrm{d}u\\
&=\left[u\log(\sin(u))\vphantom{\int}\right]_0^{\pi/2}-\int_0^{\pi/2}\log(\sin(u))\,\mathrm{d}u-\left[u-\frac{\sin(u)}{1+\cos(u)}\vphantom{\int}\right]_0^{\pi/2}\\
&=\frac\pi2\log(2)+1-\frac\pi2\tag{3}
\end{align}
$$
Combining $(2)$ and $(3)$,
$$
\sum_{k=1}^\infty\frac{\Gamma(k+\frac12)}{(2k-1)^3\Gamma(k+1)}
=\sqrt\pi\left(\frac\pi2\log(2)+1-\frac\pi2\right)\tag{4}
$$
Second Sum on the Right of $\boldsymbol{(1)}$
Using $(2)$ from my other answer, we get
$$
\sum_{k=1}^\infty\frac{\Gamma(k+1)}{8k^3\Gamma(k+\frac32)}
=\frac2{\sqrt\pi}\sum_{k=1}^\infty\frac{4^k}{8k^3(2k+1)\binom{2k}{k}}\tag{5}
$$
Starting from $(12)$ in my other answer, we get
$$
\begin{align}
\sum_{k=1}^\infty\frac{4^k}{8k^3(2k+1)\binom{2k}{k}}
&=\int_0^1\left(\frac{\sin^{-1}(x)^2}{2x}-\frac{x-\sin^{-1}(x)\sqrt{1-x^2}}{x^2}\right)\,\mathrm{d}x\\
&=\int_0^{\pi/2}\left(\frac{u^2\cos(u)}{2\sin(u)}-\frac{\sin(u)\cos(u)-u\cos^2(u)}{\sin^2(u)}\right)\,\mathrm{d}u\\
&=\small\left[\frac{u^2}2\log(\sin(u))\right]_0^{\pi/2}-\int_0^{\pi/2}u\log(\sin(u))\,\mathrm{d}u-\left[\frac12u^2+u\cot(u)-1\right]_0^{\pi/2}\\
&=\frac{\pi^2}8\log(2)-\frac7{16}\zeta(3)-\frac{\pi^2}8+1\tag{6}
\end{align}
$$
Combining $(5)$ and $(6)$,
$$
\sum_{k=1}^\infty\frac{\Gamma(k+1)}{8k^3\Gamma(k+\frac32)}
=\frac1{8\sqrt\pi}\left(2\pi^2(\log(2)-1)-7\zeta(3)+16\right)\tag{7}
$$
Putting together $(1)$, $(4)$, and $(7)$ yields
$$
\bbox[5px,border:2px solid #C0A000]{\sum_{k=1}^\infty\frac{\Gamma(\frac k2+1)}{k^3\Gamma(\frac k2+\frac32)}
=\frac1{8\sqrt\pi}\left(6\pi^2(\log(2)-1)-7\zeta(3)+8\pi+16\right)}\tag{8}
$$
Integrals Involving $\boldsymbol{\log(\sin(u))}$ Used Above
As shown in $(1)$ from this answer:
$$
\log(\sin(u))=-\log(2)+\sum_{k=1}^\infty(-1)^{k-1}\frac{\cos(2ku)}{k}\tag{9}
$$
For $k\in\mathbb{Z}$ and $k\ne0$, we have
$$
\int_0^{\pi/2}\cos(2ku)\,\mathrm{d}u=0\tag{10}
$$
and integration by parts gives
$$
\begin{align}
\int_0^{\pi/2}u\cos(2ku)\,\mathrm{d}u
&=-\frac1{2k}\int_0^{\pi/2}\sin(2ku)\,\mathrm{d}u\\
&=\frac1{4k^2}(1-\cos(k\pi))\\
&=\frac{[k\text{ is odd}]}{2k^2}\tag{11}
\end{align}
$$
It follows that
$$
\int_0^{\pi/2}\log(\sin(u))\,\mathrm{d}u=-\frac\pi2\log(2)\tag{12}
$$
and
$$
\int_0^{\pi/2}u\log(\sin(u))\,\mathrm{d}u=-\frac{\pi^2}8\log(2)+\frac7{16}\zeta(3)\tag{13}
$$
$$\frac{\Gamma(k/2+1)}{\Gamma(k/2+3/2)}=\frac{2^{\ell+1}\ell!}{(2\ell +1)!!\pi^{1/2}}$$
For $k$ odd, let $k=2m-1$. Then,
$$\frac{\Gamma(k/2+1)}{\Gamma(k/2+3/2)}=\frac{(2m-1)!!\pi^{1/2}}{2^mm!}$$ I don't know if that helps at all.
– Mark Viola Jul 06 '15 at 22:29