As I showed in another question of mine, it is easy to prove that
$$\tag{1}\phi^{n+1} =F_{n+1} \phi+F_{n }$$
given $F_1=1$ , $F_2=1$ , $F_{n+1}=F_n+F_{n-1}\text{ ; }n\geq2$.
Now, extending $(1)$ to negative and zero indices naturally yields: $$\eqalign{ & {F_{ 0}} = 0 \cr & {F_{ - 1}} = 1 \cr & {F_{ - 2}} = - 1 \cr & {F_{ - 3}} = 2 \cr & {F_{ - 4}} = - 3 \cr & {F_{ - n}} = {\left( { - 1} \right)^{n+1}}{F_{n}} \cr} $$
From this one has
$${\phi ^{ - n}} = {\left( { - 1} \right)^{n + 1}}\left( {{F_{n }}\phi - {F_{n + 1}}} \right)$$
A few examples:
$$\eqalign{ & {\phi ^{ - 1}} = \phi - 1 \cr & {\phi ^{ - 2}} = 2 - \phi \cr & {\phi ^{ - 3}} = 2\phi - 3 \cr} $$
Then one has that
$$\eqalign{ & {\left( { - \frac{1}{\phi }} \right)^n} = {F_{n + 1}} - {F_n}\phi \cr & {\phi ^n} = {F_n}\phi + {F_{n - 1}} \cr} $$
and consequently
$$\eqalign{ & {\phi ^n} + {\left( { - \frac{1}{\phi }} \right)^n} = {F_n}\phi + {F_{n - 1}} + {F_{n + 1}} - {F_n}\phi \cr & {\phi ^n} + {\left( { - \frac{1}{\phi }} \right)^n} = {F_{n + 1}} + {F_{n - 1}} \cr & {\phi ^n} + {\left( { - \frac{1}{\phi }} \right)^n} = {L_n} \cr} $$
How can this be put into an acceptable proof? (Note that given the relation between Lucas and Fibonacci numers, this straightforwardly gives Binet's Formula:
$${F_n} = \frac{1}{{\sqrt 5 }}\left[ {{\phi ^n} - {{\left( { - \frac{1}{\phi }} \right)}^n}} \right]$$