I already have a solution which uses some algebraic manipulation combined with Taylor series expansions, but I think it is worthwhile to find a neat solution based on L'Hospital's Rule.
My idea is to find a suitable approximation for both the expressions $\tan(\sin x)$ and $\sin(\tan x)$. I start with a simple approximation and improve on it further. After some guess work and manipulation with various limits I found that the expression $(2x - \sin x)$ acts as a very good approximation for both the expressions. This is justified by the existence of following limits
\begin{align}
\lim_{x \to 0}\frac{\tan(\sin x) - (2x - \sin x)}{x^{5}} = A\tag{1}\\
\lim_{x \to 0}\frac{\sin(\tan x) - (2x - \sin x)}{x^{5}} = B\tag{2}
\end{align}
The first limit is calculated as follows
\begin{align}
A &= \lim_{x \to 0}\frac{\tan(\sin x) + \sin x - 2x}{x^{5}}\notag\\
&= \lim_{x \to 0}\frac{\tan(\sin x) + \sin x - 2x}{\sin^{5}x}\cdot\frac{\sin^{5}x}{x^{5}}\notag\\
&= \lim_{x \to 0}\frac{\tan(\sin x) + \sin x - 2x}{\sin^{5}x}\notag\\
&= \lim_{t \to 0}\frac{\tan t + t - 2\arcsin t}{t^{5}}\notag\\
&= \lim_{t \to 0}\dfrac{\sec^{2}t + 1 - \dfrac{2}{\sqrt{1 - t^{2}}}}{5t^{4}}\text{ (by LHR)}\notag\\
&= \frac{1}{5}\lim_{t \to 0}\frac{(1 + \sec^{2}t)\sqrt{1 - t^{2}} - 2}{t^{4}\sqrt{1 - t^{2}}}\notag\\
&= \frac{1}{5}\lim_{t \to 0}\frac{(1 + \sec^{2}t)\sqrt{1 - t^{2}} - 2}{t^{4}}\notag\\
&= \frac{1}{5}\lim_{t \to 0}\frac{(2 + \tan^{2}t)^{2}(1 - t^{2}) - 4}{t^{4}\{(1 + \sec^{2}t)\sqrt{1 - t^{2}} + 2\}}\notag\\
&= \frac{1}{20}\lim_{t \to 0}\frac{(2 + \tan^{2}t)^{2}(1 - t^{2}) - 4}{t^{4}}\notag\\
&= \frac{1}{20}\lim_{t \to 0}\frac{4\tan^{2}t + \tan^{4}t - 4t^{2} - 4t^{2}\tan^{2}t - t^{2}\tan^{4}t}{t^{4}}\notag\\
&= \frac{1}{20}\left(\lim_{t \to 0}\frac{4(\tan^{2}t - t^{2})}{t^{4}} + \frac{\tan^{4}t}{t^{4}} - 4\frac{\tan^{2}t}{t^{2}} - t^{2}\frac{\tan^{4}t}{t^{4}}\right)\notag\\
&= \frac{1}{5}\lim_{t \to 0}\frac{\tan^{2} - t^{2}}{t^{4}} - \frac{3}{20}\notag\\
&= -\frac{3}{20} + \frac{1}{5}\lim_{t \to 0}\frac{\tan t - t}{t^{3}}\cdot\lim_{t \to 0}\frac{\tan t + t}{t}\notag\\
&= -\frac{3}{20} + \frac{2}{5}\lim_{t \to 0}\frac{\tan t - t}{t^{3}}\notag\\
&= -\frac{3}{20} + \frac{2}{5}\lim_{t \to 0}\frac{\sec^{2}t - 1}{3t^{2}}\text{ (by LHR)}\notag\\
&= -\frac{3}{20} + \frac{2}{15} = -\frac{1}{60}\notag
\end{align}
For the second limit we proceed in similar manner
\begin{align}
B &= \lim_{x \to 0}\frac{\sin(\tan x) + \sin x - 2x}{x^{5}}\notag\\
&= \lim_{x \to 0}\frac{\sin(\tan x) + \sin x - 2x}{\tan^{5}x}\cdot\frac{\tan^{5}x}{x^{5}}\notag\\
&= \lim_{x \to 0}\frac{\sin(\tan x) + \sin x - 2x}{\tan^{5}x}\notag\\
&= \lim_{t \to 0}\dfrac{\sin t + \dfrac{t}{\sqrt{1 + t^{2}}} - 2\tan^{-1}t}{t^{5}}\notag\\
&= \lim_{t \to 0}\dfrac{\cos t + \dfrac{1}{(1 + t^{2})^{3/2}} - \dfrac{2}{1 + t^{2}}}{5t^{4}}\text{ (via LHR)}\notag\\
&= \frac{1}{5}\lim_{t \to 0}\dfrac{\cos t(1 + t^{2})^{3/2} + 1 - 2\sqrt{1 + t^{2}}}{t^{4}(1 + t^{2})^{3/2}}\notag\\
&= \frac{1}{5}\lim_{t \to 0}\dfrac{\{(1 + t^{2})\cos t - 2\}\sqrt{1 + t^{2}} + 1}{t^{4}}\notag\\
&= \frac{1}{5}\lim_{t \to 0}\dfrac{\{(1 + t^{2})\cos t - 2\}^{2}(1 + t^{2}) - 1}{t^{4}[\{(1 + t^{2})\cos t - 2\}\sqrt{1 + t^{2}} - 1]}\notag\\
&= -\frac{1}{10}\lim_{t \to 0}\dfrac{\{(1 + t^{2})^{2}\cos^{2}t + 4 - 4(1 + t^{2})\cos t\}(1 + t^{2}) - 1}{t^{4}}\notag\\
&= -\frac{1}{10}\lim_{t \to 0}\dfrac{\{(1 + t^{4} + 2t^{2})(1 - \sin^{2}t) + 4 - 4(1 + t^{2})(1 - 2\sin^{2}(t/2))\}(1 + t^{2}) - 1}{t^{4}}\notag\\
&= -\frac{1}{10}\lim_{t \to 0}\left(\frac{8\sin^{2}(t/2) - \sin^{2}t - t^{2}}{t^{4}}\right.\notag\\
&\,\,\,\,\,\,\,+ \dfrac{16\sin^{2}(t/2) - 3\sin^{2}t}{t^{2}}\notag\\
&\,\,\,\,\,\,\,+ (-1 - 3\sin^{2}t + 8\sin^{2}(t/2))\notag\\
&\,\,\,\,\,\,\,+ \left.\dfrac{(1 - \sin^{2}t)t^{6}}{t^{4}}\right)\notag\\
&= -\frac{1}{10}\lim_{t \to 0}\left(\frac{8\sin^{2}(t/2) - \sin^{2}t - t^{2}}{t^{4}} + 4 - 3 - 1 + 0\right)\notag\\
&= -\frac{1}{10}\lim_{t \to 0}\left(\frac{8\sin^{2}(t/2) - 2\sin^{2}t + \sin^{2}t - t^{2}}{t^{4}}\right)\notag\\
&= -\frac{1}{10}\lim_{t \to 0}\left(\frac{8\sin^{2}(t/2) - 8\sin^{2}(t/2)\cos^{2}(t/2)}{t^{4}} + \frac{\sin t - t}{t^{3}}\cdot\frac{\sin t + t}{t}\right)\notag\\
&= -\frac{1}{10}\lim_{t \to 0}\left(\frac{8\sin^{4}(t/2)}{t^{4}} - \frac{1}{3}\right)\notag\\
&= -\frac{1}{10}\left(\frac{1}{2} - \frac{1}{3}\right) = -\frac{1}{60}\notag
\end{align}
From these limit $(1), (2)$ we easily get
\begin{align}
\lim_{x \to 0}\frac{\tan(\sin x) + \sin x - 2x}{\sin^{5}x} &= \lim_{x \to 0}\frac{\tan(\sin x) + \sin x - 2x}{x^{5}}\cdot\frac{x^{5}}{\sin^{5}x} = -\frac{1}{60}\tag{3}\\
\lim_{x \to 0}\frac{\sin(\tan x) + \sin x - 2x}{\tan^{5}x} &= \lim_{x \to 0}\frac{\sin(\tan x) + \sin x - 2x}{x^{5}}\cdot\frac{x^{5}}{\tan^{5}x} = -\frac{1}{60}\tag{4}
\end{align}
From these equations we get the next level of approximations
\begin{align}
\tan(\sin x) &\approx 2x - \sin x - \frac{\sin^{5}x}{60}\notag\\
\sin(\tan x) &\approx 2x - \sin x - \frac{\tan^{5}x}{60}\notag
\end{align}
Our claim is that the following limits exist
\begin{align}
\lim_{x \to 0}\dfrac{\sin(\tan x) - 2x + \sin x + \dfrac{\tan^{5}x}{60}}{x^{7}} &= C\tag{5}\\
\lim_{x \to 0}\dfrac{\tan(\sin x) - 2x + \sin x + \dfrac{\sin^{5}x}{60}}{x^{7}} &= D\tag{6}
\end{align}
Let the desired limit in question be $L$ i.e. $$L = \lim_{x \to 0}\frac{\sin(\tan x) - \tan(\sin x)}{x^{7}}\tag{7}$$ Subtracting $(6)$ from $(5)$ we get $$L + \frac{1}{60}\lim_{x \to 0}\frac{\tan^{5}x - \sin^{5}x}{x^{7}} = C - D\tag{8}$$ Now it is easy to see that
\begin{align}
E &= \lim_{x \to 0}\frac{\tan^{5}x - \sin^{5}x}{x^{7}}\notag\\
&= \lim_{x \to 0}\frac{\tan x - \sin x}{x^{3}}\cdot\frac{\tan^{4}x + \tan^{3}x\sin x + \tan^{2}x\sin^{2}x + \tan x\sin^{3}x + \sin^{4}x}{x^{4}}\notag\\
&= 5\lim_{x \to 0}\frac{\sin x(1 - \cos x)}{x^{3}\cos x}\notag\\
&= 5\lim_{x \to 0}\frac{\sin x}{x}\cdot\frac{1 - \cos x}{x^{2}}\notag\\
&= \frac{5}{2}\notag
\end{align}
From equation $(8)$ we can see that $L = C - D - (1/24)$. It remains to evaluate $C$ and $D$ which can be done in a manner similar to the evaluation of $A$ and $B$. We will provide here the calculation for the simpler limit $D$ and let readers evaluate $C$ by themselves. We can thus proceed as follows
\begin{align}
D &= \lim_{x \to 0}\dfrac{\tan(\sin x) - 2x + \sin x + \dfrac{\sin^{5}x}{60}}{x^{7}}\notag\\
&= \lim_{x \to 0}\dfrac{\tan(\sin x) - 2x + \sin x + \dfrac{\sin^{5}x}{60}}{\sin^{7}x}\cdot\frac{\sin^{7}x}{x^{7}}\notag\\
&= \lim_{x \to 0}\dfrac{\tan(\sin x) - 2x + \sin x + \dfrac{\sin^{5}x}{60}}{\sin^{7}x}\notag\\
&= \lim_{t \to 0}\dfrac{\tan t - 2\sin^{-1}t + t + \dfrac{t^{5}}{60}}{t^{7}}\notag\\
&= \frac{1}{60}\lim_{t \to 0}\dfrac{60\tan t - 120\sin^{-1}t + 60t + t^{5}}{t^{7}}\notag\\
&= \frac{1}{420}\lim_{t \to 0}\dfrac{60\sec^{2}t - \dfrac{120}{\sqrt{1 - t^{2}}} + 60 + 5t^{4}}{t^{6}}\text{ (via LHR)}\notag\\
&= \frac{1}{420}\lim_{t \to 0}\dfrac{\{60(2 + \tan^{2}t) + 5t^{4}\}\sqrt{1 - t^{2}} - 120}{t^{6}\sqrt{1 - t^{2}}}\notag\\
&= \frac{1}{420}\lim_{t \to 0}\dfrac{\{60(2 + \tan^{2}t) + 5t^{4}\}\sqrt{1 - t^{2}} - 120}{t^{6}}\notag\\
&= \frac{1}{420}\lim_{t \to 0}\dfrac{\{60(2 + \tan^{2}t) + 5t^{4}\}^{2}(1 - t^{2}) - 120^{2}}{t^{6}[\{60(2 + \tan^{2}t) + 5t^{4}\}\sqrt{1 - t^{2}} + 120]}\notag\\
&= \frac{1}{420}\cdot\frac{1}{240}\lim_{t \to 0}\dfrac{\{60(2 + \tan^{2}t) + 5t^{4}\}^{2}(1 - t^{2}) - 120^{2}}{t^{6}}\notag\\
&= \frac{1}{420}\cdot\frac{1}{240}\lim_{t \to 0}\left(\frac{60^{2}\tan^{4}t + 1200t^{4} + 120^{2}(\tan^{2}t - t^{2} - t^{2}\tan^{2}t)}{t^{6}}\right.\notag\\
&\,\,\,\,\,\,\,\,+\frac{600t^{4}\tan^{2}t - 60^{2}t^{2}\tan^{4}t - 1200t^{6}}{t^{6}}\notag\\
&\,\,\,\,\,\,\,\,+\left. \frac{- 600t^{6}\tan^{2}t + 25t^{8} - 25t^{10}}{t^{6}}\right)\notag\\
&= \frac{1}{420}\cdot\frac{1}{240}\lim_{t \to 0}\left(1200\cdot\frac{3\tan^{4}t + t^{4} + 12(\tan^{2}t - t^{2} - t^{2}\tan^{2}t)}{t^{6}} - 4200 + 0\right)\notag\\
&= -\frac{1}{24} + \frac{1}{84}\lim_{t \to 0}\frac{3\tan^{4}t + t^{4} + 12(\tan^{2}t - t^{2} - t^{2}\tan^{2}t)}{t^{6}}\notag\\
&= -\frac{1}{24} + \frac{1}{84}\lim_{t \to 0}\frac{3(\tan^{4} - t^{4}) - 12t^{2}(\tan^{2}t - t^{2}) + 12(\tan t - t)^{2} + 8t(3\tan t- 3t- t^{3})}{t^{6}}\notag\\
&= -\frac{1}{24} + \frac{1}{84}\lim_{t \to 0}\left(3\cdot\frac{\tan t - t}{t^{3}}\cdot\frac{\tan^{3}t + t\tan^{2}t + t^{2}\tan t + t^{3}}{t^{3}}\right.\notag\\
&\,\,\,\,\,\,\,\, -12\cdot \frac{\tan t - t}{t^{3}}\cdot\frac{\tan t + t}{t}\notag\\
&\,\,\,\,\,\,\,\, + 12\cdot\left(\frac{\tan t - t}{t^{3}}\right)^{2}\notag\\
&\,\,\,\,\,\,\,\, + \left. 8\cdot\frac{3\tan t - 3t - t^{3}}{t^{5}}\right)\notag\\
&= -\frac{1}{24} - \frac{2}{63} + \frac{2}{21}\lim_{t \to 0}\frac{3\tan t - 3t - t^{3}}{t^{5}}\notag\\
&= -\frac{37}{504} + \frac{2}{105}\lim_{t \to 0}\frac{3\sec^{2}t - 3 - 3t^{2}}{t^{4}}\text{ (via LHR)}\notag\\
&= -\frac{37}{504} + \frac{2}{35}\lim_{t \to 0}\frac{\tan t - t}{t^{3}}\cdot\frac{\tan t + t}{t}\notag\\
&= -\frac{37}{504} + \frac{4}{105} = -\frac{89}{2520}\notag
\end{align}
A similar but somewhat lengthy calculation shows that the limit $C = -17/630$ and hence desired limit $L = -1/30$.
In the above solution we make use of the following limits $$\lim_{x \to 0}\frac{\sin x - x}{x^{3}} = -\frac{1}{6},\,\lim_{x \to 0}\frac{\tan x - x}{x^{3}} = \frac{1}{3}$$ which are easily evaluated via one application of L'Hospital's rule.
Needless to say that the above approach uses heavy algebraic manipulation and expresses the given problem as equivalent of 4 tough limit problems $(1), (2), (5), (6)$. Moreover for calculation of the desired limit $L$ we only need to calculate limits $C, D$. The limits $A, B$ are needed to guess the limit expression used for $C, D$. It is thus evident that after a certain point Taylor's series approach is far more favorable compared to the L'Hospital's rule. Moreover L'Hospital's rule is effective only when it is combined with a reasonable level of algebraic manipulation. One should always avoid repeated application of LHR in successive steps.
Also note that we did not use the approximation $$2x - \sin x - \frac{x^{5}}{60}$$ for both $\sin(\tan x)$ and $\tan(\sin x)$ based on limits $(1)$ and $(2)$. Doing this would have made the difference $\sin(\tan x) - \tan(\sin x)$ as $0$. Instead the term $x^{5}$ was replaced very smartly with $\sin^{5}x$ in one case and $\tan^{5}x$ in another case because of the limit $E$ which is related to the difference $\tan^{5}x - \sin^{5}x$.
A final point which I wish to make is that this approach starts with the initial approximation $(2x - \sin x)$ which is fairly accurate. It may be possible that there is a simpler approximation which makes the calculations much easier.