Let $\omega$ be a primitive $d$ root of unity. Then define
$$\rm a:=\frac{1}{d}\sum_{j=0}^{d-1} \omega^{\,jk}=\begin{cases}1 & \rm k\equiv 0 ~\bmod d \\ 0 & \rm otherwise \end{cases}=\delta_k$$
To see the equality, first check the $\rm k\equiv0$ case, then the $\rm k\equiv 1$ case by symmetry ($\rm a=\omega \cdot a$), then notice the map $\rm j\mapsto \omega^{jk}$ sends the residues modulo $\rm d$ to the $\rm d/gcd(d,k)$th roots of unity, and it is specifically a $\rm \gcd(d,k)$-to-$1$ map, for any nonzero $\rm k$ (hence $\rm a=0$, going mod $\rm d/(d,k)$). (Also see the Kronecker delta function for a definition of the RHS.)
Using the binomial theorem again with interchange of summation, we have
$$\rm \begin{array}{c c}\frac{1}{d}\sum_{j=0}^{d-1} \big(1+\omega^j\big)^{nd} & \rm =\frac{1}{d}\sum_{j=0}^{d-1}\sum_{k=0}^{nd}\binom{nd}{k} \omega^{\,jk} \\
& \rm =\sum_{k=0}^{nd}\binom{nd}{k}\frac{1}{d}\sum_{j=0}^{d-1}\omega^{\,jk} \\
& \rm =\sum_{k=0}^{nd}\binom{nd}{k}\delta_k \\
& \rm =\sum_{\ell=0}^n \binom{nd}{n\ell}. \end{array}$$
Observe that the first leading term will be with $\omega=1$. Set $\rm \omega=e^{2\pi i/d}$; ordering $|1+\omega^j|$ by magnitude, we find the $(v+1)$th leading term is (for $v\le d/2$)
$$\begin{array}{c c} \rm \frac{(1+\omega^v)^{nd}+(1+\omega^{-v})^{nd}}{d} & = \rm
\frac{(\omega^{v/2}+\omega^{-v/2})^{nd}(\omega^{vnd/2}+\omega^{-vnd/2})}{d} \\
& =\rm \frac{2}{d}\big(2\cos(2\pi v/d) \big)^{nd}\cos(\pi vnd)\end{array}$$
Similar considerations lead to an offset modular generalization:
$$\rm \frac{1}{d}\sum_{j=0}^{d-1}\omega^{-j\,r} \big(1+\omega^j\big)^{nd} =\sum_{\ell=0}^n \binom{nd}{n\ell+r}.$$