Let $f$ be a rational function on a compact connected Riemann surface $X$. The rational function $f$ induces a holomorphic map $\overline{f}:X\to \mathbf{P}^1(\mathbf{C})$.
Let $x$ be a point on the Riemann sphere $\mathbf{P}^1(\mathbf{C})$. How can I check that if $b$ is a branch point of $\overline{f}$ by looking at the derivative of $f$?
How does this work when $X=\mathbf{P}^1(\mathbf{C})$?