\begin{array}{rrrrr|r} b & a & a & \cdot \cdot \cdot & a \\ a & b & a & \cdot \cdot \cdot & a \\ a & a & b & \cdot \cdot \cdot & a \\ \cdot & \cdot & \cdot & \space & \cdot\\ \cdot & \cdot & \cdot & \space & \cdot\\ a & a & a & \cdot \cdot \cdot & b \end{array}
I have the above matrix $A\in M_{n\times n}(F)$ where $F$ is a field and $n\geq1$, $a,b\in F$.
I'm trying to find out how to use row operations to make it into an upper triangular matrix in order to figure out the determinant. But I'm not sure how I would approach it.